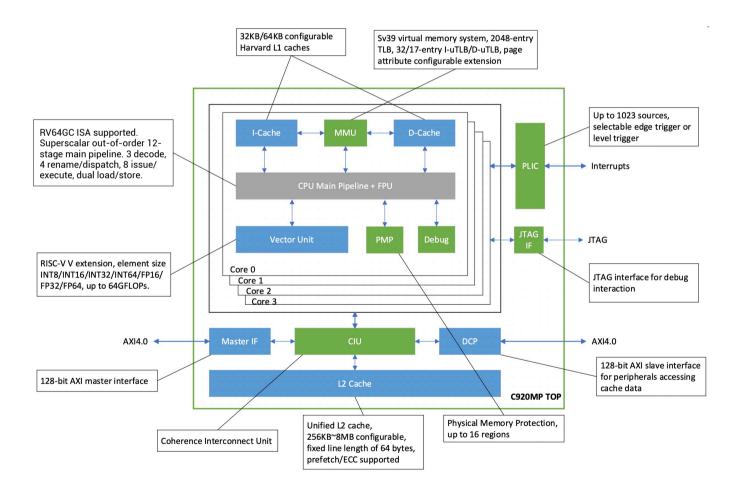


Overview

C920 is a RISC-V compatible 64-bit high performance processor with vector computing ability, developed by T-Head Semiconductor Co., Ltd. It delivers industry-leading performance in control flow, computing and frequency through architecture and micro-architecture innovations. The C920 processor is based on the RV64GCV instruction set and implements the XIE (XuanTie Instruction Extension) technology. C920 adopts a state of the art 12-stage out-of-order multiple issue superscalar pipeline with high frequency, IPC, and power efficiency, with a 128-bit vector unit implementing the RISC-V V Extension 0.7.1. C920 supports hardware cache coherency. Each cluster contains 1-4 cores. The C920 supports the AXI4 bus interface and includes a device coherence port. The C920 uses the Sv39 virtual address system with XMAE (XuanTie Memory Attributes Extension) technology. In addition, C920 includes the standard CLINT and PLIC interrupt controllers and supports RV-compatible debug interface and performance monitors.


Features

Feature	Description
Architecture	RV64GCV
SMP	Up to 4 cores in each cluster
Micro-architecture	Out of order, 3 decode, 4 rename/dispatch, 8 issue/execute, dual load/store
Pipeline	12 stages (Integer)
Floating-Point Unit	Support RISC-V F and D instruction extensions Support IEEE 754-2008 standard
Vector Unit	RISC-V V extension Vector register width 128-bit, element size: FP16/FP32/ FP64/INT8/INT16/INT32/INT64
Bus Interface	AXI4-128 master
Device Coherence Port	AXI4-128 slave (Optional)
L1 Instruction Cache	Up to 64KB with optional parity
L1 Data Cache	Up to 64KB with optional ECC

Feature	Description
L2 Cache	Up to 8MB with optional ECC Supporting parallel access with multi-bank
XuanTie Extensions	XuanTie Instruction Extension (XIE) XuanTie Memory Attributes Extension (XMAE)
Memory Management Unit (MMU)	Sv39 virtual memory translation Up to 2048-entry TLB
PMP	Up to 16 regions
Interrupt Controller	Flexibly configurable Platform-Level Interrupt Controller (PLIC) for supporting wide range of system event scenarios

XuanTie C920 Components

Processor Overview

Core

- Integer pipeline of 12 stages
- Out of order execution based on register renaming
- 3 decode, 4 rename/dispatch, 8 issue/execute, dual load/store
- Various branch prediction resources (Branch History Table, Branch Target Buffer, Return Address Stack etc.) for high performance

Multi-Core

- Support 2-4 core homogeneous multi-core system
- MOESI coherency protocol
- 2-way centralized snoop buffer
- Exclusive memory access instructions
- Integrates multi-core interrupt controllers, timers, and debug modules

Floating Point Unit (FPU)

- ♦ RISC-V F and D extensions
- Support half/single/double precision
- Does not generate floating-point exceptions
- User configurable rounding modes

Vector Unit

- ♦ RISC-V V Extension (Version 0.7.1)
- ♦ Support INT8/INT16/INT32/INT64/FP16/FP32/FP64-bit element size
- Vector chaining technology to enhance computing throughput
- Segment load/store supported
- D-Cache data path width up to 128 bits
- Unaligned memory access acceleration

Memory sub-system

The L1 caches in C920 can be configured as 32KB/64KB. The four cores in a cluster share an L2 cache with a configurable size of 256KB~8MB. Data coherency is maintained by hardware among all the L1 and L2 caches. Furthermore, data coherency between TLB, I-Cache and D-Cache is maintained by software and hardware collaboration. The L1 and L2 caches support ECC/parity.

- ♦ The L1 instruction memory system has the following key features:
 - · VIPT, two-way set-associative instruction cache
 - · Optional parity protection
 - · Fixed cache line length of 64 bytes
 - 128-bit read interface from the L2 memory system
- The L1 data memory system has the following features:
 - PIPT, two-way set associative L1 data cache
 - · Fixed cache line length of 64 bytes
 - Optional ECC protection
 - 128-bit read interface from the L2 memory system
 - Up to 128-bit read data paths from the data L1 memory system to the data path
 - Up to 128-bit write data path from the data path to the L1 memory system
- The L2 Cache has the following features:
 - Configurable size of 256KB, 512KB, 1MB, 2MB, 4MB, or 8MB
 - PIPT, 16-way set-associative structure
 - · Fixed line length of 64 bytes
 - · Optional ECC protection
 - · Support data prefetch

Memory Management Unit (MMU)

- Sv39 virtual memory systems supported
- 32/17-entry fully associative I-uTLB/D-uTLB
- 2048-entry 4-way set-associative shared TLB
- Hardware page table walker
- Virtual memory support for full address space and easy hardware for fast address translation
- ♦ Code/data sharing
- Support for full-featured OS such as Linux
- XMAE (XuanTie Memory Attributes Extension) technology extends page table entries for additional attributes

Physical Memory Protection (PMP)

16 regions basic read/write/execute memory protection with low cost

Platform-Level Interrupt Controller (PLIC)

- Support multi-core interrupt control
- Up to 1023 PLIC interrupt sources
- Up to 32 PLIC interrupt priority levels
- Up to 8 PLIC interrupt targets
- Selectable edge trigger or level trigger

JTAG Debug

- Support multi-core debug
- JTAG debug interface support several triggers
- Support software breakpoints
- Check and modify CPU register resource
- Single step or multi step flexibly supported
- High speed program download through JTAG

Low Power

- WFI instruction puts a core into low power mode
- Sub-module clocks are gated automatically when they are idle
- Per-core power down
- Cluster power down

Security

C920 supports the following security features:

- Secure boot
- Isolation between TEE and REE
- Isolation between TA (Trusted Application) and TEE
- Isolation between TA and TA

XuanTie Extensions

In addition to the standard RV64GCV ISA, C920 has also implemented the XIE (XuanTie Instruction Extension). The XIE consists of extended instructions optimized for load/store, arithmetic, bitwise and cache/TLB operations. When enabled, these instructions improve the performance significantly. For example, the extended arithmetic instructions can achieve 40% better Coremark result.

RV Compatibility

Component	RV version
ISA	RV64GCV
Vector	0.7.1
Privilege	1.10
MMU	Sv39
Interrupt controller	CLINT/PLIC

Interfaces

- ♦ Master AXI (M-AXI)
- ♦ DCP (S-AXI)
- ♦ Debug (JTAG)
- ♦ Interrupts
- ♦ Low power control

PPA

Performance	5.8 DMIPS/MHz (O2) 7.0 Coremark/MHz (O3)
Frequency	2.0 ¹ ~ 2.5 ² GHz (Typical)
Area	1.137 (MP2) / 0.398 (Core)
Power	~ 200 uW/MHz per core

^{1.}TSMC 12nm, std lvt, mem ultv, 6T Turbo lib, 0.8v;

Dynamic power@tt85c, Frequency@tt85c;

Configuration: MP2 32K L1\$, 256K L2\$, FP, No Vector, full ECC.

Configurations

Config	Options
Core Number	1-4
L1 D-Cache Size	32K, 64K
L1 I-Cache Size	32K, 64K
L2-Cache Size	256K, 512K, 1M, 2M, 4M, 8M
Vector Unit	Present
DCP	Present or not

Software Ecosystems

Application Scenarios	Linux Distributions: Yocto
Libraries	OpenBlas, OpenCV, OpenGL, OpenCL, OpenVG, OpenSSL
OS Kernel	Linux RT-Thread
Development Languages	C C++ Python
Debug Tools	Open On-Chip Debugger SEGGER LAUTERBACH CSkyDebugServer
Development Tools	SYSTEMS QEMU

^{2.}TSMC 12nm, std 30% ulvt, mem ultv, 6T Turbo lib, 1.0v;