
XuanTie-Openc910-UserManual

Jun 05, 2022

Copyright 2021 T-Head Semiconductor Co., Ltd.

Licensed under the Apache License, Version 2.0 (the ”License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

History
Version Description Date

01 openc910 first version 2021.10.19
02 change pmpaddr table 2021.10.25

i

Content

1 Overview 1
1.1 Introduction . 1
1.2 Features . 1

1.2.1 Architectural features of C910MP . 1
1.2.2 Features of the C910 core . 2

1.3 Configurations . 3
1.4 XuanTie extended architecture . 3
1.5 Version compatibility . 3
1.6 Naming conventions . 4

1.6.1 Terms . 4

2 C910MP Overview 5
2.1 Structure . 5
2.2 In-core subsystems . 5

2.2.1 IFU . 5
2.2.2 IDU . 5
2.2.3 Execution units . 7
2.2.4 LSU . 7
2.2.5 RTU . 7
2.2.6 MMU . 7
2.2.7 PMP . 8

2.3 Multi-core subsystems . 8
2.3.1 CIU . 8
2.3.2 L2 cache . 8
2.3.3 Master device interface unit . 8
2.3.4 PLIC . 9
2.3.5 Timer . 9

ii

2.4 Interface overview . 9

3 Instruction Sets 10
3.1 RV base instruction sets . 10

3.1.1 Integer instruction set (RV64I) . 10
3.1.2 Multiply/Divide instruction set (RV64M) . 14
3.1.3 Atomic instruction set (RV64A) . 16
3.1.4 Single-precision floating-point instruction set (RV64F) 17
3.1.5 Double-precision floating-point instruction set (RV64D) 19
3.1.6 Compressed instruction set (RV64C) . 22

3.2 XuanTie extended instruction sets . 25
3.2.1 Arithmetic operation instructions . 26
3.2.2 Bit operation instructions . 27
3.2.3 Memory access instructions . 27
3.2.4 Cache instructions . 31
3.2.5 Multi-core synchronization instructions . 32
3.2.6 Half-precision floating-point instructions . 32

4 CPU Modes and Registers 36
4.1 CPU modes . 36
4.2 Register view . 37
4.3 General-purpose registers . 38
4.4 Floating-point registers . 38

4.4.1 Transmit data between floating-point and general-purpose registers 39
4.4.2 Maintain consistency of register precision . 39

4.5 System control registers . 39
4.5.1 Standard control registers . 39
4.5.2 Extended control registers . 44

4.6 Data formats . 47
4.6.1 Integer data format . 47
4.6.2 Floating-point data format . 47

4.7 Big-endian and little-endian . 48

5 Exceptions and Interrupts 50
5.1 Overview . 50
5.2 Exceptions . 52

5.2.1 Exception handling . 52
5.2.2 Return from exceptions . 53
5.2.3 Imprecise exceptions . 54

5.3 Interrupts . 54
5.3.1 Interrupt priorities . 54
5.3.2 Interrupt responses . 54
5.3.3 Return from interrupts . 55

iii

6 Memory Model 56
6.1 Overview . 56

6.1.1 Memory attributes . 56
6.1.2 Memory ordering model . 57

6.2 MMU . 58
6.2.1 Overview . 58
6.2.2 TLB . 58
6.2.3 Address translation process . 59
6.2.4 System control registers . 60

6.2.4.1 Supervisor address translation and protection (satp) register 60
6.2.4.2 smcir register . 61
6.2.4.3 smir register . 63
6.2.4.4 smeh register . 64
6.2.4.5 smel register . 64

6.3 PMP . 66
6.3.1 Overview . 67
6.3.2 PMP control registers . 67

6.3.2.1 Physical memory protection configuration (pmpcfg) register 67
6.3.2.2 Physical memory protection address (pmpaddr) register 69

6.4 Memory access order . 69

7 Memory Subsystem 71
7.1 Memory Subsystem Overview . 71
7.2 L1 I-Cache . 71

7.2.1 Overview . 71
7.2.2 Way prediction . 72
7.2.3 Loop acceleration buffer . 72
7.2.4 Branch history table . 72
7.2.5 Branch and jump target predictor . 72
7.2.6 Indirect branch predictor . 73
7.2.7 Return address predictor . 73
7.2.8 Fast jump target predictor . 74

7.3 L1 D-Cache . 74
7.3.1 Overview . 74
7.3.2 Cache coherence . 75
7.3.3 Exclusive access . 75

7.4 L2 Cache . 76
7.4.1 Overview . 76
7.4.2 Cache coherence . 76
7.4.3 Structure . 77
7.4.4 RAM latency . 77

7.5 Accelerated memory access . 79

iv

7.5.1 Instruction prefetch of the L1 I-Cache . 79
7.5.2 Multi-channel data prefetch of the L1 D-Cache . 80
7.5.3 L1 adaptive write allocation mechanism . 80
7.5.4 L2 prefetch mechanism . 81

7.6 L1/L2 cache operation instructions and registers . 81
7.6.1 Extended registers of the L1 cache . 81
7.6.2 Extended registers of the L2 cache . 81
7.6.3 L1/L2 cache operation instructions . 82

8 Interrupt Controllers 84
8.1 Core local interrupt (CLINT) controller . 84

8.1.1 CLINT register address mapping . 84
8.1.2 Software interrupts . 86
8.1.3 Timer interrupts . 86

8.2 Platform-level interrupt controller (PLIC) . 88
8.2.1 Interrupt arbitration . 88
8.2.2 Interrupt request and response . 88
8.2.3 Interrupt completion . 89
8.2.4 PLIC register address mapping . 89
8.2.5 PLIC_PRIO register . 92
8.2.6 PLIC_IP register . 92
8.2.7 PLIC_IE register . 93
8.2.8 PLIC_PER register . 93
8.2.9 PLIC_TH register . 94
8.2.10 PLIC_CLAIM register . 94

8.3 Multi-core interrupts . 95
8.3.1 Multiple cores respond to external interrupts in parallel 95
8.3.2 Send software interrupts across cores . 95

9 Bus Interface 96
9.1 AXI master device interface . 96

9.1.1 Features of the AXI master device interface . 96
9.1.2 Outstanding capability of the AXI master device interface 96
9.1.3 Supported transmission types . 97
9.1.4 Supported response types . 98
9.1.5 CPU behavior in different bus responses . 98
9.1.6 Signals supported by the AXI master device interface 98

10 Debug 103
10.1 Features of the debug unit . 103
10.2 Connection between the debug unit and CPU cores . 104
10.3 Debug interface signals . 105

v

11 Power Management 108
11.1 Power domain . 108
11.2 Overview of low-power modes . 108
11.3 Core WFI process . 109
11.4 Individual-core power-off process . 109
11.5 Cluster power-off process (hardware clearing of the L2 cache) 110
11.6 Cluster power-off process (software clearing of the L2 cache) 111
11.7 Simplified scenario: overall cluster power-off process (hardware clearing of the L2 cache) . . 112
11.8 Simplified scenario: overall cluster power-off process (software clearing of the L2 cache) . . . 113
11.9 Low power consumption related programming models and interface signals 114

11.9.1 Programming models . 114
11.9.2 Interface signals . 115

12 Performance Monitoring Unit 116
12.1 PMU overview . 116
12.2 PMU programming model . 116

12.2.1 PMU functions . 116
12.2.2 PMU event overflow interrupt . 117

12.3 PMU related control registers . 117
12.3.1 M-mode counter access enable register (mcounteren) 117
12.3.2 S-mode counter access enable register (scounteren) 118
12.3.3 M-mode count inhibit register (mcountinhibit) . 119
12.3.4 S-mode write enable register (mcounterwen) . 120
12.3.5 Performance monitoring event select register (mhpmevent3-31) 120
12.3.6 Event counters . 122

13 Program Examples 124
13.1 Optimal CPU performance configuration . 124
13.2 MMU setting example . 125
13.3 PMP setting example . 129
13.4 Cache examples . 130

13.4.1 Cache enabling example . 130
13.4.2 Example of synchronization between the instruction and data caches 131
13.4.3 Example of synchronization between the TLB and the data cache 131

13.5 Synchronization primitive examples . 132
13.6 PLIC setting example . 132
13.7 PMU setting example . 133

14 Appendix A Standard Instructions 135
14.1 Appendix A-1 I instructions . 135

14.1.1 ADD: a signed add instruction . 135
14.1.2 ADDI: a signed add immediate instruction . 136
14.1.3 ADDIW: a signed add immediate instruction that operates on the lower 32 bits . . . 136

vi

14.1.4 ADDW: a signed add instruction that operates on the lower 32 bits 137
14.1.5 AND: a bitwise AND instruction . 137
14.1.6 ANDI: an immediate bitwise AND instruction . 138
14.1.7 AUIPC: an instruction that adds the immediate in the upper bits to the PC 138
14.1.8 BEQ: a branch-if-equal instruction . 138
14.1.9 BGE: a signed branch-if-greater-than-or-equal instruction 139
14.1.10 BGEU: an unsigned branch-if-greater-than-or-equal instruction 140
14.1.11 BLT: a signed branch-if-less-than instruction . 141
14.1.12 BLTU: an unsigned branch-if-less-than instruction 141
14.1.13 BNE: a branch-if-not-equal instruction . 142
14.1.14 CSRRC: a move instruction that clears control registers 143
14.1.15 CSRRCI: a move instruction that clears immediates in control registers 143
14.1.16 CSRRS: a move instruction for setting control registers 144
14.1.17 CSRRSI: a move instruction for setting immediates in control registers 144
14.1.18 CSRRW: a move instruction that reads/writes control registers 145
14.1.19 CSRRWI: a move instruction that reads/writes immediates in control registers . . . 146
14.1.20 EBREAK: a breakpoint instruction . 146
14.1.21 ECALL: an environment call instruction . 147
14.1.22 FENCE: a memory synchronization instruction . 147
14.1.23 FENCE.I: an instruction stream synchronization instruction 148
14.1.24 JAL: an instruction for directly jumping to a subroutine 148
14.1.25 JALR: an instruction for jumping to a subroutine by using an address in a register . 149
14.1.26 LB: a sign-extended byte load instruction . 149
14.1.27 LBU: an unsign-extended byte load instruction . 150
14.1.28 LD: a doubleword load instruction . 150
14.1.29 LH: a sign-extended halfword load instruction . 151
14.1.30 LHU: an unsign-extended halfword load instruction 151
14.1.31 LUI: an instruction for loading the immediate in the upper bits 152
14.1.32 LW: a sign-extended word load instruction . 152
14.1.33 LWU: an unsign-extended word load instruction . 153
14.1.34 MRET: an instruction for returning from exceptions in M-mode 153
14.1.35 OR: a bitwise OR instruction . 154
14.1.36 ORI: an immediate bitwise OR instruction . 154
14.1.37 SB: a byte store instruction . 154
14.1.38 SD: a doubleword store instruction . 155
14.1.39 SFENCE.VMA: a virtual memory synchronization instruction 155
14.1.40 SH: a halfword store instruction . 156
14.1.41 SLL: a logical left shift instruction . 157
14.1.42 SLLI: an immediate logical left shift instruction . 157
14.1.43 SLLIW: an immediate logical left shift instruction that operates on the lower 32 bits 158
14.1.44 SLLW: a logical left shift instruction that operates on the lower 32 bits 158
14.1.45 SLT: a signed set-if-less-than instruction . 159

vii

14.1.46 SLTI: a signed set-if-less-than-immediate instruction 159
14.1.47 SLTIU: an unsigned set-if-less-than-immediate instruction 160
14.1.48 SLTU: an unsigned set-if-less-than instruction . 160
14.1.49 SRA: an arithmetic right shift instruction . 161
14.1.50 SRAI: an immediate arithmetic right shift instruction 161
14.1.51 SLLIW: an immediate arithmetic right shift instruction that operates on the lower

32 bits . 162
14.1.52 SRAW: an arithmetic right shift instruction that operates on the lower 32 bits 162
14.1.53 SRET: an instruction for returning from exceptions in S-mode 163
14.1.54 SRL: a logical right shift instruction . 163
14.1.55 SRLI: an immediate logical right shift instruction . 163
14.1.56 SRLIW: an immediate logical right shift instruction that operates on the lower 32 bits164
14.1.57 SRLW: a logical right shift instruction that operates on the lower 32 bits 164
14.1.58 SUB: a signed subtract instruction . 165
14.1.59 SUBW: a signed subtract instruction that operates on the lower 32 bits 165
14.1.60 SW: a word store instruction . 166
14.1.61 WFI: an instruction for entering the low power mode 166
14.1.62 XOR: a bitwise XOR instruction . 167
14.1.63 XORI: an immediate bitwise XOR instruction . 167

14.2 Appendix A-2 M instructions . 167
14.2.1 DIV: a signed divide instruction . 168
14.2.2 DIVU: an unsigned divide instruction . 168
14.2.3 DIVUW: an unsigned divide instruction that operates on the lower 32 bits 169
14.2.4 DIVW: a signed divide instruction that operates on the lower 32 bits 169
14.2.5 MUL: a signed multiply instruction . 170
14.2.6 MULH: a signed multiply instruction that extracts the upper bits 170
14.2.7 MULHSU: a signed-unsigned multiply instruction that extracts the upper bits 170
14.2.8 MULHU: an unsigned multiply instruction that extracts the upper bits 171
14.2.9 MULW: a signed multiply instruction that operates on the lower 32 bits 171
14.2.10 REM: a signed remainder instruction . 172
14.2.11 REMU: an unsigned remainder instruction . 172
14.2.12 REMUW: an unsigned remainder instruction that operates on the lower 32 bits . . . 173
14.2.13 REMW: a signed remainder instruction that operates on the lower 32 bits 173

14.3 Appendix A-3 A instructions . 174
14.3.1 AMOADD.D: an atomic add instruction . 174
14.3.2 AMOADD.W: an atomic add instruction that operates on the lower 32 bits 175
14.3.3 AMOAND.D: an atomic bitwise AND instruction . 176
14.3.4 AMOAND.W: an atomic bitwise AND instruction that operates on the lower 32 bits 177
14.3.5 AMOMAX.D: an atomic signed MAX instruction . 178
14.3.6 AMOMAX.W: an atomic signed MAX instruction that operates on the lower 32 bits 179
14.3.7 MOMAXU.DA: an atomic unsigned MAX instruction 180

viii

14.3.8 AMOMAXU.W: an atomic unsigned MAX instruction that operates on the lower 32
bits. 181

14.3.9 AMOMIN.D: an atomic signed MIN instruction . 182
14.3.10 AMOMIN.W: an atomic signed MIN instruction that operates on the lower 32 bits . 183
14.3.11 AMOMINU.D: an atomic unsigned MIN instruction 184
14.3.12 AMOMINU.W: an atomic unsigned MIN instruction that operates on the lower 32 bits185
14.3.13 AMOOR.D: an atomic bitwise OR instruction. 186
14.3.14 AMOOR.W: an atomic bitwise OR instruction that operates on the lower 32 bits . . 186
14.3.15 AMOSWAP.D: an atomic swap instruction . 187
14.3.16 AMOSWAP.W: an atomic swap instruction that operates on the lower 32 bits 188
14.3.17 AMOXOR.D: an atomic bitwise XOR instruction . 189
14.3.18 AMOXOR.W: an atomic bitwise XOR instruction that operates on the lower 32 bits 190
14.3.19 LR.D: a doubleword load-reserved instruction . 191
14.3.20 LR.W: a word load-reserved instruction . 192
14.3.21 SC.D: a doubleword store-conditional instruction . 193
14.3.22 SC.W: a word store-conditional instruction . 194

14.4 Appendix A-4 F instructions . 195
14.4.1 FADD.S: a single-precision floating-point add instruction 195
14.4.2 FCLASS.S: a single-precision floating-point classify instruction 196
14.4.3 FCVT.L.S: an instruction that converts a single-precision floating-point number into

a signed long integer . 197
14.4.4 FCVT.LU.S: an instruction that converts a single-precision floating-point number

into an unsigned long integer . 198
14.4.5 FCVT.S.L: an instruction that converts a signed long integer into a single-precision

floating-point number . 199
14.4.6 FCVT.S.LU: an instruction that converts an unsigned long integer into a single-

precision floating-point number . 200
14.4.7 FCVT.S.W: an instruction that converts a signed integer into a single-precision

floating-point number . 201
14.4.8 FCVT.S.WU: an instruction that converts an unsigned integer into a single-precision

floating-point number . 202
14.4.9 FCVT.W.S: an instruction that converts a single-precision floating-point number into

a signed integer . 203
14.4.10 FCVT.WU.S: an instruction that converts a single-precision floating-point number

into an unsigned integer . 204
14.4.11 FDIV.S: a single-precision floating-point divide instruction 205
14.4.12 FEQ.S: a single-precision floating-point compare equal instruction 206
14.4.13 FLE.S: a single-precision floating-point compare less than or equal to instruction . . 206
14.4.14 FLT.S: a single-precision floating-point compare less than instruction 207
14.4.15 FLW: a single-precision floating-point load instruction 208
14.4.16 FMADD.S: a single-precision floating-point multiply-add instruction 208
14.4.17 FMAX.S: a single-precision floating-point MAX instruction 209

ix

14.4.18 FMIN.S: a single-precision floating-point MIN instruction 210
14.4.19 FMSUB.S: a single-precision floating-point multiply-subtract instruction 210
14.4.20 FMUL.S: a single-precision floating-point multiply instruction 211
14.4.21 FMV.W.X: a single-precision floating-point write move instruction 212
14.4.22 FMV.X.H: a single-precision floating-point read move instruction 213
14.4.23 FNMADD.S: a single-precision floating-point negate-(multiply-add) instruction . . . 213
14.4.24 FNMSUB.S: a single-precision floating-point negate-(multiply-subtract) instruction . 214
14.4.25 FSGNJ.S: a single-precision floating-point sign-injection instruction 215
14.4.26 FSGNJN.S: a single-precision floating-point negate sign-injection instruction 216
14.4.27 FSGNJX.S: a single-precision floating-point XOR sign-injection instruction 216
14.4.28 FSQRT.S: a single-precision floating-point square-root instruction 217
14.4.29 FSUB.S: a single-precision floating-point subtract instruction 218
14.4.30 FSW: a single-precision floating-point store instruction 219

14.5 Appendix A-5 D instructions . 219
14.5.1 FADD.D: a double-precision floating-point add instruction 219
14.5.2 FCLASS.D: a double-precision floating-point classify instruction 220
14.5.3 FCVT.D.L: an instruction that converts a signed long integer into a double-precision

floating-point number . 221
14.5.4 FCVT.D.LU: an instruction that converts an unsigned long integer into a double-

precision floating-point number . 222
14.5.5 FCVT.D.S: an instruction that converts a single-precision floating-point number into

a double-precision floating-point number . 223
14.5.6 FCVT.D.W: an instruction that converts a signed integer into a double-precision

floating-point number . 224
14.5.7 FCVT.D.WU: an instruction that converts an unsigned integer into a double-precision

floating-point number . 224
14.5.8 FCVT.L.D: an instruction that converts a double-precision floating-point number

into a signed long integer . 225
14.5.9 FCVT.LU.D: an instruction that converts a double-precision floating-point number

into an unsigned long integer . 226
14.5.10 FCVT.S.D: an instruction that converts a double-precision floating-point number into

a single-precision floating-point number . 227
14.5.11 FCVT.W.D: an instruction that converts a double-precision floating-point number

into a signed integer . 228
14.5.12 FCVT.WU.D: an instruction that converts a double-precision floating-point number

into an unsigned integer . 229
14.5.13 FDIV.D: a double-precision floating-point divide instruction 230
14.5.14 FEQ.D: a double-precision floating-point compare equal instruction 231
14.5.15 FLD: a double-precision floating-point load instruction 231
14.5.16 FLE.D: a double-precision floating-point compare less than or equal to instruction . 232
14.5.17 FLT.D: a double-precision floating-point compare less than instruction 232
14.5.18 FMADD.D: a double-precision floating-point multiply-add instruction 233

x

14.5.19 FMAX.D: a double-precision floating-point MAX instruction 234
14.5.20 FMIN.D: a double-precision floating-point MIN instruction 235
14.5.21 FMSUB.D: a double-precision floating-point multiply-subtract instruction 235
14.5.22 FMUL.D: a double-precision floating-point multiply instruction 236
14.5.23 FMV.D.X: a double-precision floating-point write move instruction 237
14.5.24 FMV.X.D: a double-precision floating-point read move instruction 238
14.5.25 FNMADD.D: a double-precision floating-point negate-(multiply-add) instruction . . 238
14.5.26 FNMSUB.D: a double-precision floating-point negate-(multiply-subtract) instruction 239
14.5.27 FSD: a double-precision floating-point store instruction 240
14.5.28 FSGNJ.D: a double-precision floating-point sign-injection instruction 241
14.5.29 FSGNJN.D: a double-precision floating-point negate sign-injection instruction 241
14.5.30 FSGNJX.D: a double-precision floating-point XOR sign-injection instruction 242
14.5.31 FSQRT.D: a double-precision floating-point square-root instruction 242
14.5.32 FSUB.D: a double-precision floating-point subtract instruction 243

14.6 Appendix A-6 C Instructions . 244
14.6.1 C.ADD: a signed add instruction . 244
14.6.2 C.ADDI: a signed add immediate instruction . 245
14.6.3 C.ADDIW: an add immediate instruction that operates on the lower 32 bits 245
14.6.4 C.ADDI4SPN: an instruction that adds an immediate scaled by 4 to the stack pointer246
14.6.5 C.ADDI16SP: an instruction that adds an immediate scaled by 16 to the stack pointer247
14.6.6 C.ADDW: a signed add instruction that operates on the lower 32 bits 247
14.6.7 C.AND: a bitwise AND instruction . 248
14.6.8 C.ANDI: an immediate bitwise AND instruction . 249
14.6.9 C.BEQZ: a branch-if-equal-to-zero instruction . 250
14.6.10 C.BNEZ: a branch-if-not-equal-to-zero instruction . 251
14.6.11 C.EBREAK: a break instruction . 252
14.6.12 C.FLD: a floating-point load doubleword instruction 252
14.6.13 C.FLDSP: a floating-point doubleword load stack instruction 253
14.6.14 C.FSD: a floating-point store doubleword instruction 254
14.6.15 C.FSDSP: a floating-point store doubleword stack pointer instruction 255
14.6.16 C.J: a unconditional jump instruction . 255
14.6.17 C.JALR: a jump and link register instruction . 256
14.6.18 C.JR: a jump register instruction . 256
14.6.19 C.LD: a load doubleword instruction . 257
14.6.20 C.LDSP: a load doubleword instruction . 258
14.6.21 C.LI: a load immediate instruction . 258
14.6.22 C.LUI: a load upper immediate instruction . 259
14.6.23 C.LW: a load word instruction . 260
14.6.24 C.LWSP: a load word stack pointer instruction . 260
14.6.25 C.MV: an instruction that copies the value in rs to rd 261
14.6.26 C.NOP: a no-operation instruction . 262
14.6.27 C.OR: a bitwise OR instruction . 262

xi

14.6.28 C.SD: a store doubleword instruction . 263
14.6.29 C.SDSP: a store doubleword stack pointer instruction 264
14.6.30 C.SLLI: an immediate logical left shift instruction . 264
14.6.31 C.SRAI: a right shift arithmetic immediate instruction 265
14.6.32 C.SRLI: an immediate right shift instruction . 266
14.6.33 C.SW: a store word instruction . 266
14.6.34 C.SWSP: a store word stack pointer instruction . 267
14.6.35 C.SUB: a signed subtract instruction . 268
14.6.36 C.SUBW: a signed subtract instruction that operates on the lower 32 bits 269
14.6.37 C.XOR: a bitwise XOR instruction . 269

14.7 Appendix A-8 Pseudo instructions . 270

15 Appendix B T-Head Extended Instructions 274
15.1 Appendix B-1 Cache instructions . 274

15.1.1 DCACHE.CALL: an instruction that clears all dirty page table entries in the D-Cache274
15.1.2 DCACHE.CIALL: an instruction that clears all dirty page table entries in the D-

Cache and invalidates the D-Cache . 275
15.1.3 DCACHE.CIPA: clears dirty page table entries that match the specified physical

addresses from the D-Cache and invalidates the the D-Cache 276
15.1.4 DCACHE.CISW: an instruction that clears dirty page table entries in the D-Cache

based on the specified way and set and invalidates the D-Cache 276
15.1.5 DCACHE.CIVA: an instruction that clears dirty page table entries that match the

specified virtual addresses in the D-Cache and invalidates the D-Cache 277
15.1.6 DCACHE.CPA: an instruction that clears dirty page table entries that match the

specified physical addresses from the D-Cache . 278
15.1.7 DCACHE.CPAL1: an instruction that clears dirty page table entries that match the

specified physical addresses from the L1 D-Cache . 278
15.1.8 DCACHE.CVA: an instruction that clears dirty page table entries that match the

specified virtual addresses in the D-Cache . 279
15.1.9 DCACHE.CVAL1: an instruction that clears dirty page table entries that match the

specified virtual addresses in the L1 D-Cache . 280
15.1.10 DCACHE.IPA: an instruction that invalidates page table entries that match the spec-

ified physical addresses in the D-Cache . 280
15.1.11 DCACHE.ISW: an instruction that invalidates page table entries in the D-Cache

based on the specified way and set and invalidates the D-Cache 281
15.1.12 DCACHE.IVA: an instruction that invalidates the D-Cache based on the specified

virtual address . 282
15.1.13 DCACHE.IALL: an instruction that invalidates all page table entries in the D-Cache. 282
15.1.14 ICACHE.IALL: an instruction that invalidates all page table entries in the I-Cache . 283
15.1.15 ICACHE.IALLS: an instruction that invalidates all page table entries in the I-Cache

through broadcasting . 284

xii

15.1.16 ICACHE.IPA: an instruction that invalidates page table entries that match the spec-
ified physical addresses in the I-Cache . 284

15.1.17 ICACHE.IVA: an instruction that invalidates page table entries that match the spec-
ified virtual addresses in the I-Cache . 285

15.1.18 L2CACHE.CALL: an instruction that clears all dirty page table entries in the L2 Cache286
15.1.19 L2CACHE.CIALL: an instruction that clears all dirty page table entries in the L2

Cache and invalidates the L2 Cache . 286
15.1.20 L2CACHE.IALL: an instruction that invalidates the L2 Cache 287
15.1.21 DCACHE.CSW: an instruction that clears dirty page table entries in the D-Cache

based on the specified set and way . 287
15.2 Appendix B-2 Multi-core synchronization instructions . 288

15.2.1 SFENCE.VMAS: a broadcast instruction that synchronizes the virtual memory address288
15.2.2 SYNC: an instruction that performs the synchronization operation 289
15.2.3 SYNC.I: an instruction that synchronizes the clearing operation. 290
15.2.4 SYNC.IS: a broadcast instruction that synchronizes the clearing operation 290
15.2.5 SYNC.S: a broadcast instruction that performs a synchronization operation 291

15.3 Appendix B-3 Arithmetic operation instructions . 291
15.3.1 ADDSL: an add register instruction that shifts registers 291
15.3.2 MULA: a multiply-add instruction . 292
15.3.3 MULAH: a multiply-add instruction that operates on the lower 16 bits 292
15.3.4 MULAW: a multiply-add instruction that operates on the lower 32 bits 293
15.3.5 MULS: a multiply-subtract instruction . 293
15.3.6 MULSH: a multiply-subtract instruction that operates on the lower 16 bits 293
15.3.7 MULSW: a multiply-subtract instruction that operates on the lower 32 bits 294
15.3.8 MVEQZ: an instruction that sends a message when the register is 0 294
15.3.9 MVNEZ: an instruction that sends a message when the register is not 0 295
15.3.10 SRRI: an instruction that implements a cyclic right shift operation on a linked list . 295
15.3.11 SRRIW: an instruction that implements a cyclic right shift operation on a linked list

of low 32 bits of registers. 296
15.4 Appendix B-4 Bitwise operation instructions . 296

15.4.1 EXT: a signed extension instruction that extracts consecutive bits of a register . . . 297
15.4.2 EXTU: a zero extension instruction that extracts consecutive bits of a register 297
15.4.3 FF0: an instruction that finds the first bit with the value of 0 in a register 298
15.4.4 FF1: an instruction that finds the bit with the value of 1 298
15.4.5 REV: an instruction that reverses the byte order in a word stored in the register . . 298
15.4.6 REVW: an instruction that reverses the byte order in a low 32-bit word 299
15.4.7 TST: an instruction that tests bits with the value of 0 300
15.4.8 TSTNBZ: an instruction that tests bytes with the value of 0 300

15.5 Appendix B-5 Storage instructions . 301
15.5.1 FLRD: a load doubleword instruction that shifts floating-point registers 301
15.5.2 FLRW: a load word instruction that shifts floating-point registers 302
15.5.3 FLURD: a load doubleword instruction that shifts low 32 bits of floating-point registers302

xiii

15.5.4 FLURW: a load word instruction that shifts low 32 bits of floating-point registers . . 303
15.5.5 FSRD: a store doubleword instruction that shifts floating-point registers 303
15.5.6 FSRW: a store word instruction that shifts floating-point registers. 304
15.5.7 FSURD: a store doubleword instruction that shifts low 32 bits of floating-point registers304
15.5.8 FSURW: a store word instruction that shifts low 32 bits of floating-point registers . . 305
15.5.9 LBIA: a base-address auto-increment instruction that extends signed bits and loads

bytes . 305
15.5.10 LBIB: a load byte instruction that auto-increments the base address and extends

signed bits . 306
15.5.11 LBUIA: a base-address auto-increment instruction that extends zero bits and loads

bytes . 307
15.5.12 LBUIB: a load byte instruction that auto-increments the base address and extends

zero bits . 307
15.5.13 LDD: an instruction that loads double registers . 308
15.5.14 LDIA: a base-address auto-increment instruction that loads doublewords and extends

signed bits . 308
15.5.15 LDIB: a load doubleword instruction that auto-increments the base address and ex-

tends the signed bits . 309
15.5.16 LHIA: a base-address auto-increment instruction that loads halfwords and extends

signed bits . 309
15.5.17 LHIB: a load halfword instruction that auto-increments the base address and extends

signed bits . 310
15.5.18 LHUIA: a base-address auto-increment instruction that extends zero bits and loads

halfwords . 311
15.5.19 LHUIB: a load halfword instruction that auto-increments the base address and ex-

tends zero bits . 311
15.5.20 LRB: a load byte instruction that shifts registers and extends signed bits 312
15.5.21 LRBU: a load byte instruction that shifts registers and extends zero bits 312
15.5.22 LRD: a load doubleword instruction that shifts registers 313
15.5.23 LRH: a load halfword instruction that shifts registers and extends signed bits 313
15.5.24 LRHU: a load halfword instruction that shifts registers and extends zero bits 313
15.5.25 LRW: a load word instruction that shifts registers and extends signed bits 314
15.5.26 LRWU: a load word instruction that shifts registers and extends zero bits 314
15.5.27 LURB: a load byte instruction that shifts low 32 bits of registers and extends signed

bits . 315
15.5.28 LURBU: a load byte instruction that shifts low 32 bits of registers and extends zero

bits . 315
15.5.29 LURD: a load doubleword instruction that shifts low 32 bits of registers 316
15.5.30 LURH: a load halfword instruction that shifts low 32 bits of registers and extends

signed bits . 316
15.5.31 LURHU: a load halfword instruction that shifts low 32 bits of registers and extends

zero bits . 317

xiv

15.5.32 LURW: a load word instruction that shifts low 32 bits of registers and extends signed
bits . 317

15.5.33 LURWU: a load word instruction that shifts 32 bits of registers and extends zero bits 318
15.5.34 LWD: a load word instruction that loads double registers and extends signed bits . . 318
15.5.35 LWIA: a base-address auto-increment instruction that extends signed bits and loads

words . 319
15.5.36 LWIB: a load word instruction that auto-increments the base address and extends

signed bits . 320
15.5.37 LWUD: a load word instruction that loads double registers and extends zero bits . . 320
15.5.38 LWUIA: a base-address auto-increment instruction that extends zero bits and loads

words . 321
15.5.39 LWUIB: a load word instruction that auto-increments the base address and extends

zero bits . 321
15.5.40 SBIA: a base-address auto-increment instruction that stores bytes 322
15.5.41 SBIB: a store byte instruction that auto-increments the base address 322
15.5.42 SDD: an instruction that stores double registers . 323
15.5.43 SDIA: a base-address auto-increment instruction that stores doublewords 323
15.5.44 SDIB: a store doubleword instruction that auto-increments the base address 324
15.5.45 SHIA: a base-address auto-increment instruction that stores halfwords 324
15.5.46 SHIB: a store halfword instruction that auto-increments the base address 325
15.5.47 SRB: a store byte instruction that shifts registers . 325
15.5.48 SRD: a store doubleword instruction that shifts registers 325
15.5.49 SRH: a store halfword instruction that shifts registers 326
15.5.50 SRW: a store word instruction that shifts registers 326
15.5.51 SURB: a store byte instruction that shifts low 32 bits of registers 327
15.5.52 SURD: a store doubleword instruction that shifts low 32 bits of registers 327
15.5.53 SURH: a store halfword instruction that shifts low 32 bits of registers 328
15.5.54 SURW: a store word instruction that shifts low 32 bits of registers 328
15.5.55 SWIA: a base-address auto-increment instruction that stores words 329
15.5.56 SWIB: a store word instruction that auto-increments the base address 329
15.5.57 SWD: an instruction that stores the low 32 bits of double registers 330

15.6 Appendix B-6 Half-precision floating-point instructions . 330
15.6.1 FADD.H: a half-precision floating-point add instruction 330
15.6.2 FCLASS.H: a half-precision floating-point classification instruction 331
15.6.3 FCVT.D.H: an instruction that converts half-precision floating-point data to double-

precision floating-point data . 332
15.6.4 FCVT.H.D: an instruction that converts double-precision floating-point data to half-

precision floating-point data . 333
15.6.5 FCVT.H.L: an instruction that converts a signed long integer into a half-precision

floating-point number . 334
15.6.6 FCVT.H.LU: an instruction that converts an unsigned long integer into a half-

precision floating-point number . 335

xv

15.6.7 FCVT.H.S: an instruction that converts single precision floating-point data to half-
precision floating-point data . 336

15.6.8 FCVT.H.W: an instruction that converts a signed integer into a half-precision
floating-point number . 337

15.6.9 FCVT.H.WU: an instruction that converts an unsigned integer into a half-precision
floating-point number . 338

15.6.10 FCVT.L.H: an instruction that converts a half-precision floating-point number to a
signed long integer . 339

15.6.11 FCVT.LU.H: an instruction that converts a half-precision floating-point number to
an unsigned long integer . 340

15.6.12 FCVT.S.H: an instruction that converts half-precision floating-point data to single
precision floating-point data . 341

15.6.13 FCVT.W.H: an instruction that converts a half-precision floating-point number to a
signed integer . 341

15.6.14 FCVT.WU.H: an instruction that converts a half-precision floating-point number to
an unsigned integer . 342

15.6.15 FDIV.H: a half-precision floating-point division instruction 343
15.6.16 FEQ.H: an equal instruction that compares two half-precision numbers 344
15.6.17 FLE.H: a less than or equal to instruction that compares two half-precision floating-

point numbers . 345
15.6.18 FLH: an instruction that loads half-precision floating-point data 345
15.6.19 FLT.H: a less than instruction that compares two half-precision floating-point numbers346
15.6.20 FMADD.H: a half-precision floating-point multiply-add instruction 347
15.6.21 FMAX.H: a half-precision floating-point maximum instruction 348
15.6.22 FMIN.H: a half-precision floating-point minimum instruction 348
15.6.23 FMSUB.H: a half-precision floating-point multiply-subtract instruction 349
15.6.24 FMUL.H: a half-precision floating-point multiply instruction 350
15.6.25 FMV.H.X: a half-precision floating-point write transmit instruction 351
15.6.26 FMV.X.H: a transmission instruction that reads half-precision floating-point registers 351
15.6.27 FNMADD.H: a half-precision floating-point negate-(multiply-add) instruction 352
15.6.28 FNMSUB.H: a half-precision floating-point negate-(multiply-subtract) instruction . . 353
15.6.29 FSGNJ.H: a half-precision floating-point sign-injection instruction 354
15.6.30 FSGNJN.H: a half-precision floating-point sign-injection negate instruction 354
15.6.31 FSGNJX.H: a half-precision floating-point sign-injection XOR instruction 355
15.6.32 FSH: an instruction that stores half-precision floating point numbers 355
15.6.33 FSQRT.H: an instruction that calculates the square root of the half-precision floating-

point number . 356
15.6.34 FSUB.H: a half-precision floating-point subtract instruction 357

16 Appendix C Control Registers 359
16.1 Appendix C-1 M-mode control registers . 359

16.1.1 M-mode information register group . 359

xvi

16.1.1.1 Machine vendor ID register (mvendorid) . 359
16.1.1.2 Machine architecture ID register (marchid) 359
16.1.1.3 Machine implementation ID register (mimpid) 360
16.1.1.4 Machine hart ID register (mhartid) . 360

16.1.2 M-mode exception configuration register group . 360
16.1.2.1 Machine status register (mstatus) . 360
16.1.2.2 M-mode instruction set architecture register (misa) 363
16.1.2.3 M-mode exception downgrade control register (medeleg) 363
16.1.2.4 M-mode interrupt downgrade control register (mideleg) 364
16.1.2.5 M-mode interrupt-enable register (mie) . 364
16.1.2.6 M-mode trap vector base address register (mtvec) 365
16.1.2.7 M-mode counter access enable register (mcounteren) 366

16.1.3 M-mode exception handling register group . 366
16.1.3.1 M-mode scratch register (mscratch) . 366
16.1.3.2 M-mode exception program counter register (mepc) 366
16.1.3.3 M-mode cause register (mcause) . 366
16.1.3.4 M-mode interrupt-pending register (mip) . 367

16.1.4 M-mode memory protection registers . 368
16.1.4.1 Physical memory protection configuration register (pmpcfg) 368
16.1.4.2 Physical memory address register (pmpaddr) 369

16.1.5 M-mode counter registers . 369
16.1.5.1 M-mode cycle counter (mcycle) . 369
16.1.5.2 M-mode instructions-retired counter (minstret) 369
16.1.5.3 M-mode event counter (mhpmcountern) . 369

16.1.6 M-mode counter configuration registers . 369
16.1.6.1 M-mode event selector (mhpmeventn) . 370

16.1.7 M-mode CPU control and status extension registers 370
16.1.7.1 M-mode extension status register (mxstatus) 370
16.1.7.2 M-mode hardware configuration register (mhcr) 372
16.1.7.3 M-mode hardware operation register (mcor) 373
16.1.7.4 M-mode L2 Cache control register (mccr2) 375
16.1.7.5 M-mode implicit operation register (mhint) 376
16.1.7.6 M-mode reset vector base address register (mrvbr) 379
16.1.7.7 S-mode counter write enable register (mcounterwen) 379
16.1.7.8 M-mode event interrupt enable register (mcounterinten) 379
16.1.7.9 M-mode event overflow mark register (mcounteren) 380

16.1.8 M-mode cache access extension registers . 381
16.1.8.1 M-mode cache instruction register (mcins) 381
16.1.8.2 M-mode cache access index register (mcindex) 381
16.1.8.3 M-mode cache data register (mcdata0/1) . 382

16.1.9 M-mode CPU model registers . 383
16.1.9.1 M-mode CPU model register (mcpuid) . 383

xvii

16.1.9.2 On-chip bus base address register (mapbaddr) 383
16.1.10 Multi-core extension registers . 383

16.1.10.1 Snoop listening enable register (msmpr) . 383
16.2 Appendix C-2 S-mode control registers . 384

16.2.1 S-mode exception configuration registers . 384
16.2.1.1 S-mode status register (sstatus) . 384
16.2.1.2 S-mode interrupt-enable register (sie) . 385
16.2.1.3 S-mode trap vector base address register (stvec) 385
16.2.1.4 S-mode counter access enable register (scounteren) 385

16.2.2 S-mode exception handling registers . 386
16.2.2.1 S-mode scratch register (sscratch) . 386
16.2.2.2 S-mode exception program counter register (sepc) 386
16.2.2.3 S-mode cause register (scause) . 386
16.2.2.4 S-mode interrupt-pending register (sip) . 386

16.2.3 S-mode address translation registers . 387
16.2.3.1 S-mode address translation register (satp) . 387

16.2.4 S-mode CPU control and status extension registers 387
16.2.4.1 S-mode extension status register (sxstatus) 387
16.2.4.2 S-mode hardware control register (shcr) . 387
16.2.4.3 S-mode event overflow interrupt enable register (scounterinten) 387
16.2.4.4 S-mode event overflow mark register (scounterof) 388
16.2.4.5 S-mode cycle counter (scycle) . 388
16.2.4.6 S-mode instructions-retired counter (sinstret) 388
16.2.4.7 S-mode event counter (shpmcountern) . 388

16.2.5 S-mode MMU extension register . 388
16.2.5.1 S-mode MMU control register (smcir) . 388
16.2.5.2 S-mode MMU control register (smir) . 389
16.2.5.3 S-mode MMU control register (smeh) . 389
16.2.5.4 S-mode MMU control register (smel) . 389

16.3 Appendix C-3 U-mode control registers . 389
16.3.1 U-mode floating-point control registers . 389

16.3.1.1 Floating-point accrued exceptions register (fflags) 389
16.3.1.2 Floating-point dynamic rounding mode register (frm) 389
16.3.1.3 Floating-point control and status register (fcsr) 389

16.3.2 U-mode counter/timer registers . 391
16.3.2.1 User cycle register (cycle) . 391
16.3.2.2 U-mode timer register (time) . 391
16.3.2.3 User instructions-retired counter (instret) . 391
16.3.2.4 User event counter (hpmcountern) . 391

16.3.3 U-mode floating-point extension control registers . 391
16.3.3.1 U-mode floating-point extension control register (fxcr) 391

xviii

CHAPTER 1

Overview

This document describes open-source C910 (OpenC910), also referred to as C910, C910MP, and C910 core
in this document.

1.1 Introduction

C910MP is a high-performance 64-bit multi-core CPU built on the RISC-V architecture. It is oriented to edge
computing that requires high performance. For example, it can be applied to edge servers, edge computing
cards, advanced machine vision, advanced video surveillance, self-driving, mobile smart terminals, and 5G
base stations. C910MP adopts a homogeneous multi-core architecture and supports dual cores. Each C910
core runs on a microsystem architecture developed by Alibaba Cloud and is optimized for high performance.
High-performance technologies are introduced, such as a superscalar architecture with a 3-to-8 line decoder
and multi-channel data prefetch. In addition, the C910 core performs real-time detection and shuts down
internal idle function modules to reduce dynamic power consumption of the CPU.

1.2 Features

1.2.1 Architectural features of C910MP

• Homogeneous multi-core architecture and dual cores supported;

• Power-off for each core or the entire cluster supported;

1

Chapter 1. Overview

• One AXI4 master interface and a 128-bit bus supported;

• Two levels of caches provided: L1 cache running on the Harvard architecture and L2 shared cache;

• L1 instruction/data cache size: 64 KB, with a cache line size of 64 bytes;

• The Modified, Exclusive, Shared, Invalid (MESI) cache coherence protocol supported for L1 cache, and
the Modified, Owned, Exclusive, Shared, Invalid (MOESI) cache coherence protocol supported for L2
cache;

• L2 cache: a 16-way set-associative cache sized 1 MB and with a cache line size of 64 bytes;

• Core local interrupt (CLINT) controller and platform-level interrupt controller (PLIC) supported;

• Timers supported;

• Custom multi-core debug frameworks with RISC-V-compatible interfaces supported.

1.2.2 Features of the C910 core

• RISC-V 64GC instruction set architecture;

• Little-endian mode supported;

• 9-stage to 12-stage pipelining architecture;

• Superscalar architecture with a 3-to-8 line decoder, fully transparent to software;

• In-order fetch, out-of-order issue, out-of-order completion, and in-order retirement;

• Two-level translation lookaside buffer (TLB) memory management units for virtual/physical address
translation and memory management;

• I-Cache/D-Cache size: 64 KB, with a cache line size of 64 bytes;

• Instruction prefetch, and automatic detection and dynamic startup of hardware;

• Low-power access technology with I-Cache way prediction;

• Low-power execution technology with short-loop buffer;

• 64 KB two-level multi-way parallel branch predictor;

• Branch target buffer with 1024 entries;

• 12-layer hardware return address stack supported;

• Indirect branch predictor with 256 entries;

• Non-blocking issue and speculative execution;

• Renaming technology based on physical registers;

• 0-latency move instructions supported;

• Dual issue and full out-of-order execution for load/store instructions;

www.t-head.cn 2

Chapter 1. Overview

• Concurrent bus access for up to 8 read requests and 8 write requests;

• Write combining supported;

• Strided 8-channel hardware prefetch supported;

• Half-precision, single-precision, and double-precision floating-point units supported.

1.3 Configurations

C910MP adopts the following configurations:

• Number of cores：2

• L1 I-Cache：64KB

• L1 D-Cache：64KB

• L2 Cache：1MB

• Master Interface：AXI4

• Number of external interrupts: 144

1.4 XuanTie extended architecture

C910 is compatible with XuanTie C-series extended architecture 1.0, which provides extensions in the fol-
lowing aspects:

• Operation instructions: C910 improves operation capabilities with integer, floating-point, and
load/store instructions, well supplementing the RISC-V base instruction sets.

• Cache operations: C910 enables you to easily maintain caches to improve cache efficiency.

• Memory model: C910 manages address attributes efficiently to improve memory access efficiency.

• Control registers: C910 extends the features of control registers based on the standard RISC-V archi-
tecture.

• Multi-core synchronization instructions: C910 adopts multi-core synchronization instructions to keep
multi-core consistency.

• PLIC: C910 is integrated with a built-in PLIC.

1.5 Version compatibility

C910 is compatible with the following RISC-V standard versions:

• The RISC-V Instruction Set Manual, Volume I: RISC-V User-Level ISA, Version 2.2.

www.t-head.cn 3

Chapter 1. Overview

• The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

• The mcountinhibit register in the RISC-V Instruction Set Manual, Volume II: Privileged Architecture,
Version 20190125-Public-Review-draftis added to the performance monitoring unit (PMU).

1.6 Naming conventions

1.6.1 Terms

• Logic 1The level value corresponding to the Boolean logic value TRUE.

• Logic 0The level value corresponding to the Boolean logic value FALSE.

• SetThe action of setting one or more bits to the level value corresponding to logic 1.

• ClearThe action of setting one or more bits to the level value corresponding to logic 0.

• Reserved bitA bit reserved for feature extension. The value of a reserved bit is 0 unless otherwise
specified.

• SignalAn electrical value used to transfer information based on its state or state transition.

• PinAn external electrical and physical connection. Multiple signals can connect to one pin.

• EnableThe action of switching a discrete signal to a valid state:

– Switch a valid low-level signal from a high level to a low level.

– Switch a valid high-level signal from a low level to a high level.

• DisableThe action of switching the state of an enabled signal:

• Switch a valid low-level signal from a low level to a high level.

• Switch a valid high-level signal from a high level to a low level.

• LSBThe least significant bit. MSB: The most significant bit.

• Signal, bit field, and control bit: Expressed based on a general rule.

• Identifier followed by a value range: Indicates a group of signals from the most significant bit to
the least significant bit.

For example, addr[4:0] indicates a group of address buses, where addr[4] indicates the most
significant bit, and addr[0] indicates the least significant bit.

• Single identifier: Indicates a single signal.

For example, pad_cpu_rst_b indicates a single signal.

In some cases, an identifier followed by a number is used to express a specific meaning. For
example, addr15 indicates the 16th bit of a group of buses.

www.t-head.cn 4

CHAPTER 2

C910MP Overview

2.1 Structure

The structure of C910MP is shown in Fig. 2.1 .

2.2 In-core subsystems

C910 consists of the following in-core subsystems: instruction fetch unit (IFU), instruction decoding unit
(IDU), integer unit (IU), floating-point unit (FPU), load/store unit (LSU), retirement unit (RTU), memory
management unit (MMU), and physical memory protection (PMP) unit.

2.2.1 IFU

The IFU can fetch and parallel process up to eight instructions at a time. It improves access efficiency with a
variety of technologies, for example, I-Cache way prediction, instruction registers, loop acceleration buffers,
and direct/indirect branch prediction. The IFU features low power consumption, high branch prediction
accuracy, and high prefetch efficiency.

2.2.2 IDU

The IDU can decode up to three instructions and detect data correlation at a time. The IDU detects
data correlation between instructions by using the physical register renaming technology, and sends the

5

Chapter 2. C910MP Overview

Fig. 2.1: C910MP structure

www.t-head.cn 6

Chapter 2. C910MP Overview

instructions out of order to the next-level pipeline for execution. The IDU supports out-of-order scheduling
and distribution of instructions. It speculatively issues instructions to mitigate performance loss caused by
data correlation.

2.2.3 Execution units

Execution units include IUs and FPUs.

IUs include the arithmetic logic unit (ALU), multiplication (MULT) unit, division (DIV) unit, and
branch/jump unit (BJU). The ALU performs 64-bit integer operations. The MULT unit supports 16×16,
32×32, and 64×64 integer multiplication. The DIV unit is designed based on the radix-16 SRT algorithm.
Its execution cycle varies with operands. The BJU can correct branch prediction errors within one cycle.

FPUs include the floating-point arithmetic logic unit (FALU), floating-point fused multiply-add unit
(FMAU), and floating-point divide and square root unit (FDSU). FPUs support half-precision, single-
precision, and double-precision operations. The FALU performs addition, subtraction, comparison, conver-
sion, register data transmission, sign-injection, and classification operations. The FMAU performs common
multiply and fused multiply-add operations. The FDSU performs floating-point divide and square root
operations.

2.2.4 LSU

The LSU supports dual issue for scalar store/load instructions, single issue for vector store/load instructions,
and full out-of-order execution for all store/load instructions. The LSU supports non-blocking access to
caches. It supports byte, halfword, word, doubleword, and quadword store/load instructions, and supports
sign/zero extension for byte and halfword load instructions. Store/load instructions can be executed in a
pipeline so that only one data entry is accessed per cycle. The LSU supports 8-channel hardware prefetch.
It can transfer data to the L1 D-Cache in advance. If the D-Cache is absent, the LSU supports parallel bus
access.

2.2.5 RTU

The RTU consists of a re-order buffer and a physical register stack. The re-order buffer controls out-of-order
recycling and in-order retirement of instructions. The physical register stack controls out-of-order recycling
and transfer of results. The RTU improves the instruction retirement efficiency through parallel recycling
and fast retirement of instructions. The RTU supports parallel retirement of up to three instructions per
clock cycle and implements precise exceptions.

2.2.6 MMU

The MMU translates 39-bit virtual addresses to 40-bit physical addresses in compliance with the RISC-V
SV39 standard. The MMU of C910 provides extended software writeback methods and address attributes

www.t-head.cn 7

Chapter 2. C910MP Overview

based on the hardware writeback criteria defined in SV39.

For more information, see Memory Model .

2.2.7 PMP

The PMP unit complies with the RISC-V standard and supports 8 entries, but does not support the NA4
mode. The minimum granularity supported by the PMP unit is 4 KB.

For more information, see Memory Model .

2.3 Multi-core subsystems

C910 consists of the following multi-core subsystems: consistency interface unit (CIU), L2 cache, master
device interface unit, platform-level interrupt controller (PLIC), timer, and custom multi-core single-port
debug framework.

2.3.1 CIU

The CIU ensures data coherence between L1 D-Caches based on the MESI protocol. Two listening buffers
are configured to parallel handle multiple listening requests, to fully utilize the listening bandwidth. The
CIU adopts an efficient data bypassing mechanism. When a listening request hits an L1 D-Cache under
listening, data is directly bypassed to the request initiation core. In addition, the CIU supports broadcasting
of invalid TLB/I-Cache requests. This reduces the software costs of maintaining data coherence between
TLB/I-Cache and D-Cache.

2.3.2 L2 cache

The L2 cache is tightly coupled to the CIU for synchronous access with L1 D-Caches. The L2 cache adopts a
block-based pipelining architecture and can parallel handle two access requests within one cycle. It supports
a maximum access bandwidth of 1024 bps. The operating frequency of the L2 cache is the same as that of
C910. The tag and data RAM access latency can be configured by using software.

2.3.3 Master device interface unit

The master device interface unit supports the AXI4 protocol and address access by keyword priority, and
can work under different system clock to CPU clock ratios, for example, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, and
1:8.

www.t-head.cn 8

Chapter 2. C910MP Overview

2.3.4 PLIC

The PLIC controls sampling and distribution of 144 external interrupt sources. It supports level and pulse
interrupts. You can set 32 interrupt priorities.

For more information, see Interrupt Controllers .

2.3.5 Timer

The multi-core system provides one shared 64-bit system timer. Each core has a private timer comparison
value register. Values of the system timer are collected and compared with those in the private timer
comparison value register to generate timer signals.

For more information, see Interrupt Controllers .

2.4 Interface overview

C910 provides the following interfaces by feature: clock reset signal, bus system, interrupt system, debug
system, low power system, DFT system, and CPU running monitoring signal. For more information, see
Fig. 2.2.

Fig. 2.2: C910MP interfaces

www.t-head.cn 9

CHAPTER 3

Instruction Sets

This section describes the instruction sets implemented in C910: RV base instruction sets and XuanTie
extended instruction sets.

3.1 RV base instruction sets

3.1.1 Integer instruction set (RV64I)

The integer instruction set includes instructions of the following types by feature:

• Add/Subtract instructions

• Logical operation instructions

• Shift instructions

• Compare instructions

• Data transmission instructions

• Branch and jump instructions

• Memory access instructions

• Control register operation instructions

• Low power instructions

• Exception-return instructions

10

Chapter 3. Instruction Sets

• Special functional instructions

Table 3.1: RV64I instructions

Instruction Description Execution latency
Add/Subtract instructions
ADD A signed add instruction 1
ADDW A signed add instruction that op-

erates on the lower 32 bits
1

ADDI A signed add immediate instruc-
tion

1

ADDIW A signed add immediate instruc-
tion that operates on the lower 32
bits

1

SUB A signed subtract instruction 1
SUBW A signed subtract instruction

that operates on the lower 32 bits
1

Logic operation instructions
AND A bitwise AND instruction. 1
ANDI An immediate bitwise AND in-

struction
1

OR A bitwise OR instruction 1
ORI An immediate bitwise OR in-

struction
1

XOR A bitwise XOR instruction. 1
XORI An immediate bitwise XOR in-

struction
1

Shift instructions
SLL A logical left shift instruction 1
SLLW A word logical left shift instruc-

tion that operates on the lower 32
bits

1

SLLI An immediate logical left shift in-
struction

1

SLLIW An immediate logical left shift
instruction that operates on the
lower 32 bits

1

SRL A logical right shift instruction 1
SRLW A logical right shift instruction

that operates on the lower 32 bits
1

Continued on next page

www.t-head.cn 11

Chapter 3. Instruction Sets

Table 3.1 – continued from previous page
Instruction Description Execution latency
SRLI An immediate logical right shift

instruction
1

SRLIW An immediate logical right shift
instruction that operates on the
lower 32 bits

1

SRA An arithmetic right shift instruc-
tion

1

SRAW An arithmetic right shift instruc-
tion that operates on the lower 32
bits

1

SRAI An immediate arithmetic right
shift instruction

1

SRAIW An immediate arithmetic right
shift instruction that operates on
the lower 32 bits

1

Compare instructions
SLT A signed set-if-less-than instruc-

tion
1

SLTU An unsigned set-if-less-than in-
struction

1

SLTI A signed set-if -less-than-
immediate instruction

1

SLTIU An unsigned set-if -less-than-
immediate instruction

1

Data transmission instruc-
tions
LUI A load upper immediate instruc-

tion
1

AUIPC An add upper immediate to PC
instruction

1

Branch and jump instruc-
tions
BEQ A branch-if-equal instruction 1
BNE A branch-if-not-equal instruction 1
BLT A signed branch-if-less-than in-

struction
1

BGE A signed branch-if-g reater-than-
or-equal instruction

1

Continued on next page

www.t-head.cn 12

Chapter 3. Instruction Sets

Table 3.1 – continued from previous page
Instruction Description Execution latency
BLTU An unsigned branch-if-less-than

instruction
1

BGEU An unsigned branch-if-g reater-
than-or-equal instruction

1

JAL An instruction for directly jump-
ing to a subroutine

1

JALR An instruction for jumping to a
subroutine by using an address in
a register

1

Memory access instructions
LB A sign-extended byte load in-

struction
WEAK ORDER LOAD: >=3
STORE: 1 STRONG ORDER
Aperiodic

LBU An unsign-extended byte load in-
struction

Same as above

LH A sign-extended halfword load in-
struction

Same as above

LHU An unsign-extended halfword
load instruction

Same as above

LW A sign-extended word load in-
struction

Same as above

LWU An unsign-extended word load
instruction

Same as above

LD A doubleword load instruction Same as above
SB A byte store instruction Same as above
SH A halfword store instruction Same as above
SW A word store instruction Same as above
SD A doubleword store instruction Same as above
Control register operation in-
structions
CSRRW A move instruction that

reads/writes control registers
Blocked
Aperiodic

CSRRS A move instruction for setting
control registers

Same as above

CSRRC A move instruction that clears
control register

Same as above

Continued on next page

www.t-head.cn 13

Chapter 3. Instruction Sets

Table 3.1 – continued from previous page
Instruction Description Execution latency
CSRRWI A move instruction that

reads/writes immediates in
control registers

Same as above

CSRRSI A move instruction for setting
immediates in control registers

Same as above

CSRRCI A move instruction that clears
immediates in control registers

Same as above

Low power instructions
WFI An instruction for entering the

low-power standby mode
Aperiodic

Exception-return instructions
MRET An instruction for returning from

exceptions in machine mode (M-
mode)

Block

SRET An instruction for returning from
exceptions in supervisor mode (S-
mode)

Same as above

Special functional instructions
FENCE A memory synchronization in-

struction
Aperiodic

FENCE.I An instruction stream synchro-
nization instruction

Blocked

SFENCE.VMA A virtual memory synchroniza-
tion instruction

Same as above

EBREAK A breakpoint instruction 1
ECALL An environment call instruction 1

For more information, see Appendix A-1 I instructions .

3.1.2 Multiply/Divide instruction set (RV64M)

For more information, see Appendix A-2 M instructions .

www.t-head.cn 14

Chapter 3. Instruction Sets

www.t-head.cn 15

Chapter 3. Instruction Sets

3.1.3 Atomic instruction set (RV64A)

Table 3.2: RV64A instructions

Instruction Description Execution latency
LR.W A word load-reserved instruction. This instruction is split into

multiple atomic instructions
for execution.
This instruction can be split
into atomic instructions for
blocked execution, but la-
tency is not allowed.

LR.D A doubleword load-reserved instruction.
SC.W A word store-conditional instruction.
SC.D A doubleword store-conditional instruc-

tion.
AMOSWAP.W An atomic swap instruction that oper-

ates on the lower 32 bits.
AMOSWAP.D An atomic swap instruction.
AMOADD.W An atomic add instruction that operates

on the lower 32 bits.
AMOADD.D An atomic add instruction.
AMOXOR.W An atomic bitwise XOR instruction that

operates on the lower 32 bits.
AMOXOR.D An atomic bitwise XOR instruction.
AMOAND.W An atomic bitwise AND instruction that

operates on the lower 32 bits.
AMOAND.D An atomic bitwise AND instruction.
AMOOR.W An atomic bitwise OR instruction that

operates on the lower 32 bits.
AMOOR.D An atomic bitwise OR instruction
AMOMIN.W An atomic signed MIN instruction that

operates on the lower 32 bits.
AMOMIN.D An atomic signed MIN instruction
AMOMAX.W An atomic signed MAX instruction that

operates on the lower 32 bits.
AMOMAX.D An atomic signed MAX instruction.
AMOMINU.W An atomic unsigned MIN instruction

that operates on the lower 32 bits.
AMOMINU.D An atomic unsigned MIN instruction.
AMOMAXU.W An atomic unsigned MAX instruction

that operates on the lower 32 bits.
AMOMAXU.D An atomic unsigned MAX instruction.

www.t-head.cn 16

Chapter 3. Instruction Sets

For more information, see Appendix A-3 A instructions .

3.1.4 Single-precision floating-point instruction set (RV64F)

A single-precision floating-point instruction set includes instructions of the following types by feature:

• Operation instructions

• Sign injection instructions

• Data transmission instructions

• Compare instructions

• Data type conversion instructions

• Memory store instructions

• Floating-point classify instructions

Table 3.3: RV64F instructions :name: RVF_table

Instruction Description Latency
Operation instruction
FADD.S A single-precision floating-point

add instruction.
3

FSUB.S A single-precision floating-point
subtract instruction.

3

FMUL.S A single-precision floating-point
multiply instruction

4

FMADD.S A single-precision floating-point
multiply-add instruction.

5

FMSUB.S A single-precision floating-point
multiply-subtract instruction.

5

FNMADD.S A single-precision floating-point
n egate-(multiply-add) instruc-
tion.

5

FNMSUB.S A single-precision floating-point
negate -(multiply-subtract) in-
struction.

5

FDIV.S A single-precision floating-point
divide instruction.

4-10

FSQRT.S A single-precision floating-point
square-root instruction.

4-10

Sign injection instructions
Continued on next page

www.t-head.cn 17

Chapter 3. Instruction Sets

Table 3.3 – continued from previous page
Instruction Description Latency
FSGNJ.S A single-precision floating-point

sign-injection instruction.
3

FSGNJN.S A single-precision floating-point
negate sign-injection instruction.

3

FSGNJX.S A single-precision floating-point
sign-injection XOR instruction.

3

Data transmission instruc-
tions
FMV.X.W A single-precision floating-point

read move instruction
1+1 in split execution

FMV.W.X A single-precision floating-point
write move instruction.

1+1 in split execution

Compare instructions
FMIN.S A single-precision floating-point

MIN instruction.
3

FMAX.S A single-precision floating-point
MAX instruction.

3

FEQ.S A single-precision floating-point
compare equal instruction.

3+1 in split execution

FLT.S A single-precision floating-point
compare less than instruction.

3+1 in split execution

FLE.S A single-precision floating-point
compare less than or equal to in-
struction.

3+1 in split execution

Data type conversion in-
structions
FCVT.W.S An instruction that converts

a single-precision floating-point
number into a signed integer.

3+1 in split execution

FCVT.WU.S An instruction that converts
a single-precision floating-point
number into an unsigned integer.

3+1 in split execution

FCVT.S.W An instruction that converts a
signed integer into a single-
precision floating-point number.

3+1 in split execution

FCVT.S.WU An instruction that converts an
unsigned integer into a single-
precision floating-point number.

3+1 in split execution

Continued on next page

www.t-head.cn 18

Chapter 3. Instruction Sets

Table 3.3 – continued from previous page
Instruction Description Latency
FCVT.L.S An instruction that converts

a single-precision floating-point
number into a signed long inte-
ger.

3+1 in split execution

FCVT.LU.S An instruction that converts
a single-precision floating-point
number into an unsigned long in-
teger.

3+1 in split execution

FCVT.S.L An instruction that converts a
signed long integer into a single-
precision floating-point number.

1+3 in split execution

FCVT.S.LU An instruction that converts
an unsigned long integer into
a single-precision floating-point
number.

1+3 in split execution

Memory store instruction
FLW A single-precision floating-point

load instruction.
WEAK ORDER LOAD: >=3
STORE: 1 STRONG ORDER
Aperiodic

FSW A single-precision floating-point
store instruction.

Same as above

Floating-point classify instruc-
tions
FCLASS.S A single-precision floating-point

classify instruction.
1+1

For more information, see Appendix A-4 F instructions .

3.1.5 Double-precision floating-point instruction set (RV64D)

A double-precision floating-point instruction set includes instructions of the following types by feature:

• Operation instructions

• Sign injection instructions

• Data transmission instructions

• Compare instructions

• Data type conversion instructions

• Memory store instructions

www.t-head.cn 19

Chapter 3. Instruction Sets

Table 3.4: RV64D instructions

Instruction Description Latency
Operation instruction
FADD.D A double-precision floating-point

add instruction
3

FSUB.D A double-precision floating-point
subtract instruction.

3

FMUL.D A double-precision floating-point
multiply instruction.

4

FMADD.D A double-precision floating-point
multiply-add instruction.

5

FMSUB.D A double-precision floating-point
multiply-subtract instruction

5

FNMSUB.D A double-precision floating-point
n egate-(multiply-add) instruc-
tion

5

FNMADD.D A double-precision floating-point
negate -(multiply-subtract) in-
struction.

5

FDIV.D A double-precision floating-point
divide instruction.

4-17

FSQRT.D A double-precision floating-point
square-root instruction.

4-17

Sign injection instruction
FSGNJ.D A double-precision floating-point

sign-injection instruction.
3

FSGNJN.D A double-precision floating-point
negate sign-injection instruction.

3

FSGNJX.D A double-precision floating-point
sign-injection XOR instruction.

3

Data transmission instruc-
tions
FMV.X.D A double-precision floating-point

read move instruction.
1+1

FMV.D.X A double-precision floating-point
write move instruction.

1+1

Compare instructions
Continued on next page

www.t-head.cn 20

Chapter 3. Instruction Sets

Table 3.4 – continued from previous page
Instruction Description Latency
FMIN.D A double-precision floating-point

instruction for extracting the
minimum value

3

FMAX.D A double-precision floating-point
instruction for extracting the
maximum value.

3

FEQ.D A double-precision floating-point
compare instruction for deter-
mining whether register values
are equal.

3+1 in split execution

FLT.D A double-precision floating-point
compare instruction for deter-
mining whether a register value
is less than another.

3+1 in split execution

FLE.D A double-precision floating-point
compare instruction for deter-
mining whether a register value
is less than or equal to another.

3+1 in split execution

Data type conversion in-
structions
FCVT.S.D An instruction that converts

a double-precision floating-point
number into a single-precision
floating-point number.

3

FCVT.D.S An instruction that converts
a single-precision floating-point
number into a double-precision
floating-point number.

3

FCVT.W.D An instruction that converts
a double-precision floating-point
number into a signed integer.

3+1 in split execution

FCVT.WU.D An instruction that converts
a double-precision floating-point
number into an unsigned integer.

3+1 in split execution

FCVT.D.W An instruction that converts a
signed integer into a double-
precision floating-point number.

3+1 in split execution

Continued on next page

www.t-head.cn 21

Chapter 3. Instruction Sets

Table 3.4 – continued from previous page
Instruction Description Latency
FCVT.D.WU An instruction that converts an

unsigned integer into a double-
precision floating-point number.

3+1 in split execution

FCVT.L.D An instruction that converts
a double-precision floating-point
number into a signed long inte-
ger.

3+1 in split execution

FCVT.LU.D An instruction that converts
a double-precision floating-point
number into an unsigned long in-
teger.

3+1 in split execution

FCVT.D.L An instruction that converts a
signed long integer into a double-
precision floating-point number.

3+1 in split execution

FCVT.D.LU An instruction that converts
an unsigned long integer into
a double-precision floating-point
number.

3+1 in split execution

Memory store instructions
FLD A double-precision floating-point

load instruction.
Weak order
LOAD: >=3
STORE: 1
STRONG ORDER
Aperiodic

FSD A double-precision floating-point
store instructio

Same as above

Floating-point classify in-
structions
FCLASS.D A double-precision floating-point

classify instruction
1+1

For more information, see Appendix A-5 D instructions .

3.1.6 Compressed instruction set (RV64C)

The compressed instruction set includes instructions of the following types by feature:

• Add/Subtract instructions

• Logical operation instructions

www.t-head.cn 22

Chapter 3. Instruction Sets

• Shift instructions

• Data transmission instructions

• Branch and jump instructions

• Immediate offset access instructions

Table 3.5: RV64C instructions

Instruction Description Latency
Add/Subtract instructions
C.ADD A signed add instruction 1
C.ADDW A signed add instruction that op-

erates on the lower 32 bits.
1

C.ADDI A signed add immediate instruc-
tion.

1

C.ADDIW A signed add immediate instruc-
tion that operates on the lower 32
bits.

1

C.SUB A compressed signed subtract in-
struction.

1

C.SUBW A signed subtract instruction
that operates on the lower 32 bits

1

C.ADDI16SP An instruction that adds an im-
mediate scaled by 16 to the stack
pointer.

1

C.ADDI4SPN An instruction that adds an im-
mediate scaled by 4 to the stack
pointer

1

Logic operation instructions
C.AND A bitwise AND instruction 1
C.ANDI An immediate bitwise AND in-

struction
1

C.OR A bitwise OR instruction 1
C.XOR A bitwise XOR instruction 1
Shift instructions
C.SLLI An immediate logical left shift in-

struction.
1

C.SRLI An immediate logical right shift
instruction.

1

C.SRAI An immediate arithmetic right
shift instruction.

1

Continued on next page

www.t-head.cn 23

Chapter 3. Instruction Sets

Table 3.5 – continued from previous page
Instruction Description Latency
Data transmission instruc-
tions
C.MV A data move instruction 1
C.LI An instruction for moving imme-

diates in the lower bits
1

C.LUI An instruction for moving imme-
diates in the upper bits

1

Branch and jump instruc-
tions
C.BEQZ A b ranch-if-equal-to-zero in-

struction.
1

C.BNEZ A branc h-if-not-equal-to-zero in-
struction.

1

C.J An unconditional jump instruc-
tion

1

C.JR A register-based jump instruc-
tion

1

C.JALR An instruction for jumping to a
subroutine by using an address in
a register

1

Immediate offset access in-
structions
C.LW A word load instruction Weak order

LOAD: >=3
STORE: 1
STRONG ORDER
Aperiodic

C.SW A word store instruction. Same as above
C.LWSP A word stack load instruction Same as above
C.SWSP A word stack store instruction Same as above
C.LD A doubleword load instruction. Same as above
C.SD A doubleword store instruction Same as above
C.LDSP A doubleword stack load instruc-

tion
Same as above

C.SDSP A doubleword stack store instruc-
tion

Same as above

C.FLD A double-precision load instruc-
tion.

Same as above

Continued on next page

www.t-head.cn 24

Chapter 3. Instruction Sets

Table 3.5 – continued from previous page
Instruction Description Latency
C.FSD A double-precision store instruc-

tion.
Same as above

C.FLDSP A double-precision stack store in-
struction.

Same as above

C.FSDSP A double-precision stack load in-
struction.

Same as above

Special instructions
C.NOP A no-operation instruction 1
C.EBREAK A breakpoint instruction 1

For more information, see Appendix A-6 C Instructions .

3.2 XuanTie extended instruction sets

C910 provides some extended custom instructions based on the RV64GC instruction sets. Extended half-
precision floating-point instructions of C910 can be directly used. All other extended instruction sets of
C910 must be enabled before they can be used; otherwise, illegal instruction errors will occur. To enable an
extended instruction set, enable the THEADISAEE bit in the MXSTATUS register.

www.t-head.cn 25

Chapter 3. Instruction Sets

3.2.1 Arithmetic operation instructions

Table 3.6: Arithmetic operation instructions

Instruction Description Execution Latency
Add/Subtract in-
structions
ADDSL An add register instruction that shifts registers 1
MULA A multiply-add instruction Additive numbers uncor-

related: 4
MULS A multiply-subtract instruction Additive numbers uncor-

related: 4
MULAW A multiply-add instruction that operates on the

lower 32 bits
Additive numbers corre-
lated: 1

MULSW A multiply-subtract instruction that operates on
the lower 32 bits.

Additive numbers corre-
lated: 1

MULAH A multiply-add instruction that operates on the
lower 16 bits

Additive numbers corre-
lated: 1

MULSH A multiply-subtract instruction that operates on
the lower 16 bits.

Additive numbers corre-
lated: 1

Shift instructions
SRRI A cyclic right shift instruction. 1
SRRIW A cyclic right shift instruction that operates on the

lower 32 bits.
1

Move instructions
MVEQZ An instruction for moving values when the register

value is 0
1

MVNEZ An instruction for moving values when the register
value is not 0

1

For more information, see Appendix B-3 Arithmetic operation instructions .

www.t-head.cn 26

Chapter 3. Instruction Sets

3.2.2 Bit operation instructions

Table 3.7: Bit operation instructions

Instruction Description Execution la-
tency

Bit operation in-
structions
TST An instruction for testing bits with the value of 0. 1
TSTNBZ An instruction for testing bytes with the value of 0. 1
REV An instruction for reversing the byte order. 1
REVW An instruction for reversing the byte order in the lower 32

bits.
1

FF0 An instruction for fast finding the first bit with the value of
0 in a register.

1

FF1 An instruction for fast finding the first bit with the value of
1 in a register.

1

EXT A signed extension instruction for extracting consecutive bits
of a register.

1

EXTU A zero extension instruction for extracting consecutive bits of
a register.

1

For more information, see Appendix B-4 Bitwise operation instructions .

3.2.3 Memory access instructions

Table 3.8: Memory access instructions

Instruction Description Execution latency
FLRD A doubleword load instruction

for shifting floating-point regis-
ters.

FLRW A word load instruction for shift-
ing floating-point registers.

FLURD A doubleword load instruction
for shifting the lower 32 bits in
floating-point registers.

FLURW A word load instruction for shift-
ing the lower 32 bits in floating-
point registers.

Continued on next page

www.t-head.cn 27

Chapter 3. Instruction Sets

Table 3.8 – continued from previous page
Instruction Description Execution latency
LRB A byte load instruction for

shifting registers and extending
signed bits.

LRH A halfword load instruction for
shifting registers and extending
signed bits

LRW A halfword load instruction for
shifting registers and extending
signed bits

LRD A doubleword load instruction
for shifting registers.

LRBU A byte load instruction for shift-
ing registers and extending zero
bits.

LRHU A halfword load instruction for
shifting registers and extending
zero bits.

LRWU A word load instruction for shift-
ing registers and extending zero
bits.

LURB A byte load instruction for
shifting registers and extending
signed bits.

LURH A halfword load instruction for
shifting registers and extending
signed bits.

LURW A word load instruction for shift-
ing the lower 32 bits in registers
and extending signed bits.

LURD A doubleword load instruction
for shifting the lower 32 bits in
floating-point registers.

LURBU A byte load instruction for shift-
ing the lower 32 bits in registers
and extending zero bits.

LURHU A halfword load instruction for
shifting the lower 32 bits in reg-
isters and extending zero bits.

Continued on next page

www.t-head.cn 28

Chapter 3. Instruction Sets

Table 3.8 – continued from previous page
Instruction Description Execution latency
LURWU A word load instruction for shift-

ing the lower 32 bits in registers
and extending zero bits.

LBIA A base-address auto-increment
instruction for loading bytes and
extending signed bits.

This instruction is split into the
load and ALU instructions for ex-
ecution.

LBIB A byte load instruction for auto-
incrementing the base address
and extending signed bits.

LHIA A base-address auto-increment
instruction for loading halfwords
and extending signed bits.

LHIB A halfword load instruction for
auto-incrementing the base ad-
dress and extending signed bits.

LWIA A base-address auto-increment
instruction for loading words and
extending signed bits.

LWIB The word load instruction for
auto-incrementing the base ad-
dress and extending signed bits.

LDIA A base-address auto-increment
instruction for loading double-
words and extending signed bits.

LDIB A doubleword load instruction
for auto-incrementing the base
address and extending signed
bits.

LBUIA A base-address auto-increment
instruction for loading bytes and
extending zero bits.

LBUIB A byte load instruction for auto-
incrementing the base address
and extending zero bits.

LHUIA An address auto-increment in-
struction for loading halfwords
and extending zero bits.

Continued on next page

www.t-head.cn 29

Chapter 3. Instruction Sets

Table 3.8 – continued from previous page
Instruction Description Execution latency
LHUIB A halfword load instruction for

auto-incrementing the base ad-
dress and extending zero bits

LWUIA An address auto-increment in-
struction for loading words and
extending zero bits.

LWUIB A word load instruction for auto-
incrementing the base address
and extending zero bits.

LDD A double-register load instruc-
tion.

This instruction is split into two
load instructions for execution.

LWD A double-register word load in-
struction for extending signed
bits.

LWUD A double-register word load in-
struction for extending zero bits.

FSRD A doubleword store instruction
for shifting floating-point regis-
ters.

Weak order
LOAD: >=3
STORE: 1
STRONG ORDER
Aperiodic

FSRW A word store instruction for shift-
ing floating-point registers.

FSURD A doubleword store instruction
for shifting the lower 32 bits in
floating-point registers.

FSURW A word store instruction for shift-
ing the lower 32 bits in floating-
point registers.

SRB A byte store instruction for shift-
ing registers.

SRW A word store instruction for shift-
ing registers.

SRD A doubleword store instruction
for shifting registers.

SURB A byte store instruction for shift-
ing the lower 32 bits in registers.

Continued on next page

www.t-head.cn 30

Chapter 3. Instruction Sets

Table 3.8 – continued from previous page
Instruction Description Execution latency
SURH A halfword store instruction for

shifting the lower 32 bits in reg-
isters.

SURW A word store instruction for shift-
ing the lower 32 bits in registers.

SURD A doubleword store instruction
for shifting the lower 32 bits in
floating-point registers

SBIA A base-address auto-increment
instruction for storing bytes

This instruction is split into the
store and ALU instructions for
execution.

SBIB A byte store instruction for auto-
incrementing the base address.

SHIA A base-address auto-increment
instruction for storing halfwords.

SHIB A halfword store instruction for
auto-incrementing the base ad-
dress.

SWIA A base-address auto-increment
instruction for storing words.

SWIB A word store instruction for auto-
incrementing the base address.

SDIA A base-address auto-increment
instruction for storing double-
words

SDIB A doubleword store instruction
for auto-incrementing the base
address.

SDD A double-register store instruc-
tion.

This instruction is split into two
store instructions for execution.

SWD An instruction for storing the
lower 32 bits in double registers

For more information, see Appendix B-5 Storage instructions.

3.2.4 Cache instructions

For more information, see Appendix B-1 Cache instructions.

www.t-head.cn 31

Chapter 3. Instruction Sets

3.2.5 Multi-core synchronization instructions

Table 3.9: Multi-core synchronization instructions

Instruction Description
SFENCE.VMAS A broadcast instruction for synchronizing virtual memory.
SYNC A synchronization instruction
SYNC.S A synchronization broadcast instruction
SYNC.I An instruction for synchronizing the clearing operation.
SYNC.IS A broadcast instruction for synchronizing the clearing operation.

For more information, see Appendix B-2 Multi-core synchronization instructions.

3.2.6 Half-precision floating-point instructions

Table 3.10: Half-precision floating-point instructions

Instruction Description Execution latency
Operation instructions
FADD.H A half-precision floating-point

add instruction.
3

FSUB.H A half-precision floating-point
subtract instruction.

3

FMUL.H A half-precision floating-point
multiply instruction.

3

FMADD.H A half-precision floating-point
multiply-add instruction.

4

FMSUB.H A half-precision floating-point
multiply-subtract instruction.

4

FNMADD.H A half-precision floating-point n
egate-(multiply-add) instruction.

4

FNMSUB.H A half-precision floating-point
negate -(multiply-subtract) in-
struction.

4

FDIV.H A half-precision floating-point di-
vide instruction.

4-7

FSQRT.H A half-precision floating-point
square-root instruction.

4-7

Sign injection instructions
Continued on next page

www.t-head.cn 32

Chapter 3. Instruction Sets

Table 3.10 – continued from previous page
Instruction Description Execution latency
FSGNJ.H A half-precision floating-point

sign-injection instruction
3

FSGNJN.H A half-precision floating-point
negate sign-injection instruction

3

FSGNJX.H A half-precision floating-point
XOR sign-injection instruction

3

Data transmission instructions
FMV.X.H A half-precision floating-point

read move instruction.
1+1

FMV.H.X A half-precision floating-point
write move instruction

1+1

Compare instructions
FMIN.H A half-precision floating-point

MIN instruction
3

FMAX.H A half-precision floating-point
MAX instruction.

3

FEQ.H A half-precision floating-point
compare equal instruction.

3+1 in split execution

FLT.H A half-precision floating-point
compare less than instruction.

3+1 in split execution

FLE.H A half-precision floating-point
compare less than or equal to in-
struction.

3+1 in split execution

Data type conversion in-
structions
FCVT.S.H An instruction that converts

a half-precision floating-point
number into a single-precision
floating-point number.

3

FCVT.H.S An instruction that converts
a single-precision floating-point
number into a half-precision
floating-point number.

3

FCVT.D.H An instruction that converts
a half-precision floating-point
number into a double-precision
floating-point number.

3

Continued on next page

www.t-head.cn 33

Chapter 3. Instruction Sets

Table 3.10 – continued from previous page
Instruction Description Execution latency
FCVT.H.D An instruction that converts

a double-precision floating-point
number into a half-precision
floating-point number.

3

FCVT.W.H An instruction that converts a
half-precision floating-point num-
ber into a signed integer.

3+1 in split execution

FCVT.WU.H An instruction that converts a
half-precision floating-point num-
ber into an unsigned integer.

3+1 in split execution

FCVT.H.W An instruction that converts
a signed integer into a half-
precision floating-point number

3+1 in split execution

FCVT.H.WU The instruction that converts
an unsigned integer into a half-
precision floating-point number.

3+1 in split execution

FCVT.L.H An instruction that converts a
half-precision floating-point num-
ber into a signed long integer.

3+1 in split execution

FCVT.LU.H An instruction that converts a
half-precision floating-point num-
ber into an unsigned long integer.

3+1 in split execution

FCVT.H.L An instruction that converts a
signed long integer into a half-
precision floating-point number.

3+1 in split execution

FCVT.H.LU An instruction that converts an
unsigned long integer into a half-
precision floating-point number.

3+1 in split execution

Memory store instructions
FLH A half-precision floating-point

load instruction
Weak order
LOAD: >=3
STORE: 1
STRONG ORDER

FSH A half-precision floating-point
store instruction.

Same as above

Floating-point classify in-
structions

Continued on next page

www.t-head.cn 34

Chapter 3. Instruction Sets

Table 3.10 – continued from previous page
Instruction Description Execution latency
FCLASS.H A single-precision floating-point

classify instruction
1+1

For more information, see Appendix B-6 Half-precision floating-point instructions .

www.t-head.cn 35

CHAPTER 4

CPU Modes and Registers

4.1 CPU modes

C910 supports three RISC-V **privilege modes**: machine mode (M-mode), supervisor mode (S-mode),
and user mode (U-mode). C910 runs programs in M-mode after reset. The three modes correspond to
different operation privileges and differ in the following aspects:

1. Register access

2. Use of privileged instructions

3. Memory access

• The U-mode provides the lowest privileges.

User programs are allowed to access only the registers specific to the U-mode. This prevents user
programs from accessing privileged information. The operating system manages and serves user
programs by coordinating their behaviors.

• The S-mode provides higher privileges than the U-mode but lower privileges than the
M-mode.

Programs running in S-mode are not allowed to access control registers specific to the M-mode
and are limited by physical memory protection (PMP). The page-based virtual memory acts as
the core of the S-mode.

• The M-mode has the highest privileges.

36

Chapter 4. CPU Modes and Registers

Programs running in M-mode have full access to memory, I/O resources, and underlying features
required for starting and configuring the system. By default, the CPU switches to the M-mode to
respond to exceptions and interrupts that occur in any mode unless the exceptions and interrupts
are delegated.

Most instructions can run in all the three modes. However, some privileged instructions with major
impact on the system are available only in S-mode or M-mode. For more information, see Appendix A
Standard Instructions and Appendix B T-Head Extended Instructions.

The privilege mode in which an exception occurs is different from that in which the CPU responds to
the exception. The CPU switches to a higher privilege mode to respond to the exception, and switches back
to the lower privilege mode after the exception is handled.

4.2 Register view

The register view of C910 is shown in Fig. 4.1.

Fig. 4.1: Register view

www.t-head.cn 37

Chapter 4. CPU Modes and Registers

4.3 General-purpose registers

C910 provides thirty-two 64-bit general-purpose registers that have the same features as those defined in
RISC-V. For more information, see Table 4.1.

Table 4.1: General-purpose registers

Register ABI name Description
x0 zero A hardwired zero register.
x1 ra A return address register.
x2 sp A stack pointer register.
x3 gp A global pointer register.
x4 tp A thread pointer register.
x5 t0 A temporary/standby link register.
x6-7 t1-2 Temporary registers.
x8 s0/fp A reserved register/frame pointer register.
x9 s1 A reserved register.
x10-11 a0-1 Function argument/Return value registers.
x12-17 a2-7 Function argument registers.
x18-27 s2-11 Reserved registers.
x28-31 t3-6 Temporary registers.

The general-purpose registers are used to sore instruction operands, instruction execution results, and
address information.

4.4 Floating-point registers

In addition to standard RV64FD instructions, C910 also supports floating-point half-precision computing and
provides 32 independent 64-bit floating-point registers. These registers are accessible in U-mode, S-mode,
and M-mode.

Table 4.2: Floating-point registers

Register ABI name Description
f0-7 ft0-7 Floating-point temporary registers.
f8-9 fs0-1 Floating-point reserved registers.
f10-11 fa0-1 Floating-point argument/return value registers.
f12-17 fa2-7 Floating-point argument registers.
f18-27 fs2-11 Floating-point reserved registers.
f28-31 ft8-11 Floating-point temporary registers.

www.t-head.cn 38

Chapter 4. CPU Modes and Registers

Unlike x0, f0 is not hardwired to 0, but its bit values are variable like other floating-point registers. A
single-precision floating-point number occupies only the lower 32 bits of a 64-bit floating-point register, and
the upper 32 bits must be set to 1; otherwise, the number will be considered nonnumeric. A half-precision
floating-point number occupies only the lower 16 bits of a 64-bit floating-point register, and the upper 48
bits must be set to 1; otherwise, the number will be considered nonnumeric.

The independent floating-point registers help increase the register capacity and bandwidth, improving
performance of the CPU. Along with the floating-point registers, floating-point load and store instructions
and instructions for transferring data between floating-point and general-purpose registers are added.

4.4.1 Transmit data between floating-point and general-purpose registers

Data can be transmitted between floating-point and general-purpose registers through floating-point register
move instructions. Floating-point register move instructions include:

• FMV.X.H/FMV.H.X: A half-precision data move instruction for floating-point registers.

• FMV.X.W/FMV.W.X: A single-precision data move instruction for floating-point registers.

• FMV.X.D/FMV.D.X: A double-precision data move instruction for floating-point registers.

When half-precision, single-precision, or double-precision data is transmitted from a general-purpose
register to a floating-point register, the data format remains unchanged. Therefore, a program can directly
use these registers without converting their types.

For more information, see Appendix A-4 F instructions.

4.4.2 Maintain consistency of register precision

Floating-point registers can store half-precision, single-precision, double-precision, and integer data. For
example, the type of data stored in f1 depends on the last write operation, and may be any one of the four
types.

Floating-point units (FPUs) do not detect data formats based on hardware. The hardware parses data
formats in a floating-point register only based on the executed floating-point instruction, regardless of the
data format in the last write operation in the register. In this case, the consistency of data precision in the
register is ensured only by the compiler or program.

4.5 System control registers

4.5.1 Standard control registers

This section describes RISC-V standard control registers implemented in C910 by M-mode, S-mode, and
U-mode.

www.t-head.cn 39

Chapter 4. CPU Modes and Registers

The RISC-V standard M-mode control registers implemented in C910 are described in Table 4.3.

Table 4.3: RISC-V standard M-mode control registers

Register Read/Write permission ID Description
M-mode infor-
mation registers
mvendorid Read-only in M-mode 0xF11 A vendor ID regis-

ter.
marchid Read-only in M-mode 0xF12 An architecture ID

register.
mimpid Read-only in M-mode 0xF13 An M-mode hard-

ware implementa-
tion ID register.

mhartid Read-only in M-mode 0xF14 AnM-mode logical
kernel ID register.

M-mode excep-
tion configura-
tion registers
mstatus Read/Write in M-mode 0x300 An M-mode CPU

status register.
misa Read/Write in M-mode 0x301 An M-mode CPU

instruction set at-
tribute register.

medeleg Read/Write in M-mode 0x302 An M-mode ex-
ception delegation
control register.

mideleg Read/Write in M-mode 0x303 An M-mode in-
terrupt delegation
control register.

mie Read/Write in M-mode 0x304 An M-mode inter-
rupt enable con-
trol register.

mtvec Read/Write in M-mode 0x305 An M-mode vector
base address regis-
ter.

mcounteren Read/Write in M-mode 0x306 An M-mode
counter enable
control register.

mcountinhibit Read/Write in M-mode 0x320 An M-mode count
inhibit register.

Continued on next page

www.t-head.cn 40

Chapter 4. CPU Modes and Registers

Table 4.3 – continued from previous page
Register Read/Write permission ID Description
M-mode excep-
tion handling
registers
mscratch Read/Write in M-mode 0x340 An M-mode

temporary data
backup register
upon exceptions.

mepc Read/Write in M-mode 0x341 An M-mode ex-
ception program
counter.

mcause Read/Write in M-mode 0x342 An M-mode excep-
tion event cause
register.

mtval Read/Write in M-mode 0x343 An M-mode excep-
tion event vector
register.

mip Read/Write in M-mode 0x344 An M-mode inter-
rupt pending state
register.

M-mode mem-
ory protection
registers
pmpcfg0 Read/Write in M-mode 0x3A0 Physical memory

protection configu-
ration register 0.

pmpaddr0 Read/Write in M-mode 0x3B0 Physical memory
protection base
address register 0.

��
pmpaddr7 Read/Write in M-mode 0x3B7 Physical memory

protection base
address register 7.

M-mode c oun-
ters/timers
mcycle Read/Write in M-mode 0xB00 An M-mode cycle

counter.
Continued on next page

www.t-head.cn 41

Chapter 4. CPU Modes and Registers

Table 4.3 – continued from previous page
Register Read/Write permission ID Description
minstret Read/Write in M-mode 0xB02 An M-mode re-

tired instruction
counter.

mhpmcounter3 Read/Write in M-mode 0xB03 Machine-mode
counter 3.

��
mhpmcounter31 Read/Write in M-mode 0xB1F M-mode counter

31.
M-mode
counter configu-
ration registers
mhpmevent3 Read/Write in M-mode 0x323 M-mode event se-

lect register 3.
��
mhpmevent31 Read/Write in M-mode 0x33F M-mode event se-

lect register 31.

The RISC-V standard S-mode control registers implemented in C910 are described in Table 4.4.

www.t-head.cn 42

Chapter 4. CPU Modes and Registers

Table 4.4: RISC-V standard S-mode control registers

Register Read/Write permission ID Description
S-mode
exception
configura-
tion registers
sstatus Read/Write in S-mode 0x100 An S-mode CPU sta-

tus register.
sie Read/Write in S-mode 0x104 An S-mode interrupt

enable control regis-
ter.

stvec Read/Write in S-mode 0x105 An S-mode vector
base address register.

scounteren Read/Write in S-mode 0x106 An S-mode counter
enable control regis-
ter.

S-mode
exception
handling
registers
sscratch Read/Write in S-mode 0x140 An S-mode tempo-

rary data backup
register upon excep-
tions.

sepc Read/Write in S-mode 0x141 An S-mode exception
program counter.

scause Read/Write in S-mode 0x142 An S-mode exception
event cause register.

stval Read/Write in S-mode 0x143 An S-mode exception
event vector register.

sip Read/Write in S-mode 0x144 An S-mode interrupt
pending state regis-
ter.

S-mode
address
translation
registers
satp Read/Write in S-mode 0x180 An S-mode virtual

address translation
and protection regis-
ter.

www.t-head.cn 43

Chapter 4. CPU Modes and Registers

The RISC-V standard user-mode control registers implemented in C910 are described in Table 4.5.

Table 4.5: RISC-V standard U-mode control registers

Register Read/Write permission ID Description
U-mode floating-
point control regis-
ters
fflags Read/Write in U-mode 0x001 A floating-point

accrued exception sta-
tus register.

frm Read/Write in U-mode 0x002 A floating-point
dynamic rounding mode
control register.

fcsr Read/Write in U-mode 0x003 A floating-point control
and status register.

U-mode c oun-
ters/timers
cycle Read/Write in U-mode 0xC00 A U-mode cycle

counter.
time Read/Write in U-mode 0xC01 A U-mode timer.
instret Read/Write in U-mode 0xC02 A U-mode retired in-

struction counter.
hpmcounter3 Read/Write in U-mode 0xC03 A U-mode counter 3.
��
hpmcounter31 Read/Write in U-mode 0xC1F U-mode counter 31.

4.5.2 Extended control registers

This section describes extended control registers implemented in C910 by M-mode, S-mode, and U-mode.

The extended M-mode control registers of C910 are described in Table 4.6.

www.t-head.cn 44

Chapter 4. CPU Modes and Registers

Table 4.6: Extended M-mode control registers of C910

Register Read/Write permission ID Description
Extended M-mode
CPU control and
status registers
mxstatus Read/Write in M-mode 0x7C0 An extended M-mode status regis-

ter.
mhcr Read/Write in M-mode 0x7C1 An M-mode hardware configura-

tion register.
mcor Read/Write in M-mode 0x7C2 An M-mode hardware operation

register.
mccr2 Read/Write in M-mode 0x7C3 An M-mode L2 cache control reg-

ister.
mhint Read/Write in M-mode 0x7C5 An M-mode implicit operation reg-

ister.
mrvbr Read-only in M-mode 0x7C7 An M-mode reset

vector base address register.
mcounterwen Read/Write in M-mode 0x7C9 An S-mode counter write enable

register.
mcounterinten Read/Write in M-mode 0x7CA An M-mode event interrupt enable

register.
mcounterof Read/Write in M-mode 0x7CB An M-mode overflow flag register.
Extended M-mode
cache access regis-
ters
mcins Read/Write in M-mode 0x7D2 An M-mode cache instruction reg-

ister.
mcindex Read/Write in M-mode 0x7D3 An M-mode cache access index reg-

ister.
mcdata0 Read/Write in M-mode 0x7D4 An M-mode cache data register 0.
mcdata1 Read/Write in M-mode 0x7D5 An M-mode cache data register 1.
Extended M-mode
CPU model registers
mcpuid Read-only in M-mode 0xFC0 An M-mode CPU model register.
mapbaddr Read-only in M-mode 0xFC1 An on-chip bus base address regis-

ter.
Extended multi-core
registers
msmpr Read/Write in M-mode 0x7F3 A snooping enable register.

www.t-head.cn 45

Chapter 4. CPU Modes and Registers

For more information, see Appendix C-1 M-mode control registers.

The extended S-mode control registers of C910 are described in Table 4.7.

Table 4.7: Extended S-mode control registers of C910

Register Read/Write permission ID Description
Extended S-mode
CPU control and
status registers
sxtatus Read/Write in S-mode 0x5C0 An extended S-mode

status register.
shcr Read/Write in S-mode 0x5C1 An S-mode hardware

control register.
scounterinten Read/Write in S-mode 0x5C4 An S-mode event inter-

rupt enable register.
scounterof Read/Write in S-mode 0x5C5 An S-mode event over-

flow flag register.
scycle Read/Write in S-mode 0x5E0 An S-mode cycle

counter.
��
shpmcounter31 Read/Write in S-mode 0x5FF S-mode counter 31.
Extended S-mode
MMU registers
smir Read/Write in S-mode 0x9C0 An S-mode MMU index

register.
smel Read/Write in S-mode 0x9C1 An S-mode MMU En-

tryLo register.
smeh Read/Write in S-mode 0x9C2 An S-mode MMU En-

tryHi register.
smcir Read/Write in S-mode 0x9C3 An S-mode MMU con-

trol register.

For more information, see Appendix C-2 S-mode control registers.

The extended U-mode control registers of C910 are described in Table 4.8.

www.t-head.cn 46

Chapter 4. CPU Modes and Registers

Table 4.8: Extended U-mode control registers of C910

Register Read/Write permission ID Description
Extended U-mode
floating-point con-
trol registers
fxcr Read/Write in U-mode 0x800

An extended
U-mode

floating-point control
register.

For more information, see Appendix C-3 U-mode control registers.

4.6 Data formats

4.6.1 Integer data format

Values in a register are not distinguished by big-endian or little-endian type, but by signed or unsigned type.
Values in a register are arranged from right to left with the least significant bit being the rightmost bit and
the most significant bit being the leftmost bit, as shown in Fig. 4.2.

Fig. 4.2: Integer data structure in registers

4.6.2 Floating-point data format

FPUs of C910 comply with the RISC-V standard and the ANSI/IEEE 754-2008 standard for floating-point
arithmetic, and support half-precision, single-precision, and double-precision computation. The floating-
point data format is shown in Fig. 4.3. Single-precision data occupies only the lower 32 bits of a 64-bit

www.t-head.cn 47

Chapter 4. CPU Modes and Registers

floating-point register, and the upper 32 bits must be set to 1; otherwise, the data will be considered
nonnumeric. Half-precision data occupies only the lower 16 bits of a 64-bit floating-point register, and the
upper 48 bits must be set to 1; otherwise, the data will be considered nonnumeric.

Fig. 4.3: Floating-point data structure in registers

4.7 Big-endian and little-endian

The concepts of big-endian and little-endian are proposed with respect to the data storage formats of mem-
ories. In the big-endian scheme, the most significant byte of an address is stored to the lower bits in physical
memory. In the little-endian scheme, the most significant byte of an address is stored to the upper bits in
physical memory. The data formats are shown in Fig. 4.4.

C910 supports only the little-endian scheme, and supports binary integers with standard complements.
The length of each instruction operand can be explicitly encoded in programs (load/store instructions) or
implicitly indicated in instruction operations (index operation and byte extraction) Usually, an instruction
receives a 64-bit operand and generates a 64-bit result.

www.t-head.cn 48

Chapter 4. CPU Modes and Registers

Fig. 4.4: Data structure in memory

www.t-head.cn 49

CHAPTER 5

Exceptions and Interrupts

5.1 Overview

Exception handling is a core feature of a CPU. Exceptions include instruction exceptions and external
interrupts. When some exception events occur, the CPU is enabled to respond to these events. The events
include hardware errors, instruction execution errors, and user program request services.

The key of exception handling is to save the operating status of the CPU when an exception occurs
and resume the status when the CPU exits exception handling. Exceptions can be identified in all stages of
the instruction pipeline. The CPU hardware ensures that subsequent instructions do not change the CPU
status. Exceptions are handled at the boundary of an instruction. To be specific, the CPU responds to the
exceptions when the instruction retires, and saves the address of the to-be-executed instruction when the
CPU exits exception handling. Even if exceptions are identified before an instruction retires, the CPU does
not handle the exceptions until the instruction retires. To ensure proper functioning of programs, the CPU
does not repeatedly run the executed instructions after exception handling is completed.

In machine mode (M-mode), the CPU responds to an instruction exception or an external interrupt in
the following procedure:

Step 1: Save the exception PC to the mepc register.

Step 2: Update the mcause and mtval registers based on the exception type.

Step 3: Save the machine interrupt-enable (MIE) bit in the mstatus register to the MPIE field, clear
the MIE field, and prohibit responses to interrupts.

50

Chapter 5. Exceptions and Interrupts

Step 4: Save the privilege mode applied before the exception occurs to the MPP field in the mstatus
register, and switch to the M-mode.

Step 5: Obtain the entry address of exception program based on the base address and mode in the
mtvec register, and run instructions of the exception program in sequence.

C910 conforms to the exception vector table defined in RISC-V, as shown in Table 5.1.

Table 5.1: Exception and interrupt vector assignment

Interrupt flag Exception vector ID Description
1 0 Unavailable.
1 1 A software interrupt in supervisor mode (S-mode).
1 2 Reserved.
1 3 A software interrupt in M-mode.
1 4 Unavailable.
1 5 A timer interrupt in S-mode.
1 6 Reserved.
1 7 The timer interrupt in M-mode.
1 8 Unavailable.
1 9 An external interrupt in S-mode.
1 10 Reserved.
1 11 An external interrupt in M-mode.
1 17 A performance detection overflow interrupt.
1 Others Reserved.
0 0 Unavailable.
0 1 A fetch instruction access error exception.
0 2 An illegal instruction exception.
0 3 A debug breakpoint exception.
0 4 A load instruction unaligned access exception.
0 5 A load instruction access error exception.
0 6 A store/atomic instruction unaligned access exception.
0 7 A store/atomic instruction access error exception.
0 8 A user-mode (U-mode) environment call exception.
0 9 An S-mode environment call exception.
0 10 Reserved.
0 11 An M-mode environment call exception.
0 12 An instruction fetch page error exception.
0 13 A load instruction page error exception.
0 14 Reserved.
0 15 A store/atomic instruction page error exception.
0 >= 16 Reserved.

www.t-head.cn 51

Chapter 5. Exceptions and Interrupts

C910 supports exception and interrupt delegation. When an exception or interrupt occurs in S-mode,
the CPU switches to the M-mode for handling. This causes performance loss of the CPU. Delegation enables
the CPU to respond to exceptions and interrupts in S-mode. Exceptions that occur in M-mode are not
delegated, but still handled in M-mode. Interrupts that occur in M-mode can be delegated to the S-mode
for handling, except the external interrupts, software interrupts, and timer interrupts that occur in M-mode.
In M-mode, the CPU does not respond to delegated interrupts.

In S-mode and U-mode, the CPU can respond to all interrupts and exceptions that meet the specified
criteria. The CPU responds to undelegated exceptions and interrupts in M-mode, and updates the machine-
mode exception handling registers. The CPU responds to delegated exceptions and interrupts in S-mode,
and updates the S-mode exception handling registers.

5.2 Exceptions

5.2.1 Exception handling

In M-mode, the CPU responds to illegal instruction or access error exceptions in the following procedure:

Step 1: Save the exception PC to the mepc register.

Step 2: Set the interrupt flag in the mcause register to 0, write the exception ID to the mcause register,
and update the mtval register based on the rules defined in Table 5.2.

Step 3: Save the machine interrupt-enable (MIE) bit in the mstatus register to the MPIE field, clear
the MIE field, and prohibit responses to interrupts.

Step 4: Save the privilege mode applied before the exception occurs to the MPP field in the mstatus
register, and switch to the M-mode.

Step 5: The PC fetches an instruction from the base address in the mtvec register and executes the
instruction. The instruction is usually a jump instruction for jumping to the top-level handler. The handler
analyzes the mcause register to obtain the exception ID and calls the handler corresponding to the exception
ID.

www.t-head.cn 52

Chapter 5. Exceptions and Interrupts

Table 5.2: Updates to mtval when exceptions occur

Exception vec-
tor ID

Exception mtval update

1 Fetch instruction access error exception Virtual address accessed by the fetch in-
struction

2 Illegal instruction exception Instruction code
3 Debug breakpoint exception 0
4 Load instruction unaligned access excep-

tion
Virtual address accessed by the load instruc-
tion

5 Load instruction access error exception 0
6 Store/Atomic instruction unaligned ac-

cess exception
Virtual address accessed by the
store/atomic instruction

7 Store/Atomic instruction access error ex-
ception

0

8 U-mode environment call exception 0
9 S-mode environment call exception 0
11 M-mode environment call exception 0
12 Fetch instruction page error exception Virtual address accessed by the fetch in-

struction
13 Load instruction page access exception Virtual address accessed by the load instruc-

tion
15 Store/Atomic instruction page error ex-

ception
Virtual address accessed by the
store/atomic instruction

5.2.2 Return from exceptions

You can run the mret instruction to return from an exception. In this case, the CPU performs the following
operations:

• Restore the mepc register to the PC. (The mepc register stores the PC applied when the exception
occurs. You can adjust the mepc register to skip the exception instruction; otherwise, the exception
instruction will be executed again.)

• Restore the value of the MPIE field in the mstatus register to the MIE field in the mstatus register.

• Restore the privilege mode applied before the exception occurs from the MPP field in the mstatus
register.

www.t-head.cn 53

Chapter 5. Exceptions and Interrupts

5.2.3 Imprecise exceptions

In rare cases, the CPU may encounter imprecise exceptions. An imprecise exception means that the mepc
register does not point to the instruction triggering the exception when the exception occurs. For example,
the bus returns an error after the CPU executes a load instruction. An instruction can quickly retire in the
pipeline, and the load instruction may have retired when the bus returns the error. Therefore, the mepc
register points to a subsequent instruction instead of the load instruction.

However, imprecise exceptions rarely occur in practical systems. Once an imprecise exception occurs,
the system may have encountered a fatal error.

5.3 Interrupts

5.3.1 Interrupt priorities

When receiving multiple interrupt requests, the CPU responds to them by their priorities (in descending
order):

• M-mode external interrupt

• M-mode software interrupt

• M-mode timer interrupt

• S-mode external interrupt

• S-mode software interrupt

• S-mode timer interrupt

• PMU overflow interrupt

• S-mode external interrupt (delegated)

• S-mode software interrupt (delegated)

• S-mode timer interrupt (delegated)

• PMU overflow interrupt (delegated)

5.3.2 Interrupt responses

In M-mode, the CPU responds to an interrupt in the following procedure:

Step 1: Execute the current instruction and save the PC of the next instruction to the mepc register.

Step 2: Set the interrupt flag in the mcause register to 1, write the interrupt ID to the mcause register,
and update the mtval register to 0.

www.t-head.cn 54

Chapter 5. Exceptions and Interrupts

Step 3: Save the machine interrupt-enable (MIE) bit in the mstatus register to the MPIE field, clear
the MIE field, and prohibit responses to interrupts.

Step 4: Save the privilege mode applied before the interrupt occurs to the MPP field in the mstatus
register, and switch to the M-mode.

Step 5 (The Mode field in the mtvec register is 0, indicating a direct interrupt): The
PC fetches an instruction from the base address in the mtvec register and executes the instruction. The
instruction is usually a jump instruction for jumping to the top-level handler. The handler analyzes the
mcause register to obtain the interrupt ID and calls the handler corresponding to the interrupt ID.

Step 5 (The Mode field in the mtvec register is 1, indicating a vectored interrupt): The PC
fetches an instruction from the address calculated in (Base address in the mtvec register + 4 × Interrupt ID)
and executes the instruction. The instruction is usually a jump instruction for jumping to the corresponding
interrupt handler.

5.3.3 Return from interrupts

You can run the mret instruction to return from an interrupt. In this case, the CPU performs the following
operations:

• Restore the mepc register to the PC. (The mepc register stores the PC of the next instruction and
therefore does not need to be adjusted.)

• Restore the value of the MPIE field in the mstatus register to the MIE field in the mstatus register.

Restore the privilege mode applied before the interrupt occurs from the MPP field in the mstatus
register.

www.t-head.cn 55

CHAPTER 6

Memory Model

6.1 Overview

6.1.1 Memory attributes

C910 supports two memory types: memory and device, which are distinguished by the SO bit. The memory
supports speculative execution and out-of-order execution. It is further classified into cacheable memory
and non-cacheable memory. The device supports only non-speculative in-order execution and therefore is
non-cacheable. It is further classified into bufferable device and non-bufferable device. Bufferable indicates
that a response to a write request can be quickly returned on an intermediate node. Non-bufferable indicates
that a response to a write request is returned only after the end device completes writing.

To share data among multiple cores, C910 allows you to set the shareable (SH) page attribute. A
shareable page is shared among multiple cores, and the hardware maintains data coherence. A non-shareable
page is exclusively occupied by a core, and the software, instead of hardware, maintains data coherence among
multiple cores.

The SH attribute of the cacheable memory is configurable. The non-cacheable memory and device are
shareable by default, and you cannot modify their SH attributes.

In addition, C910 allows you to set the security (SEC) page attribute.

Table 6.1 describes the page attributes corresponding to each memory type.

56

Chapter 6. Memory Model

Table 6.1: Memory types

Memory type SO C B SH SEC
Cacheable memory 0 1 1 Configurable Configurable
Non-cacheable memory 0 0 1 1 Configurable
Bufferable device 1 0 1 1 Configurable
Non-bufferable device 1 0 0 1 Configurable

The CPU can obtain the page attribute of an address from the sysmap.h file or a page table entry
(PTE). The two methods are described as follows:

1. Page attributes of addresses are determined by the sysmap.h file if virtual addresses are not translated
into physical addresses, that is, the machine mode (M-mode) or MMU is disabled.

2. Page attributes of addresses depend on the MAEE field in the mxstatus register if virtual addresses
are translated into physical addresses, that is, the CPU is not in M-mode and the MMU is enabled. If
the MAEE field is enabled, page attributes of addresses are determined by page attributes extended in the
corresponding PTEs. If the MAEE field is disabled, page attributes of addresses are determined by the
sysmap.h file.

sysmap.h is an extended configuration file of C910 that is open to users. You can define page attributes
for different address ranges as required.

sysmap.h allows you to set page attributes for up to 8 address spaces. The largest address (non-inclusive)
of address space i (i = 0 to 7) is defined by the SYSMAP_BASE_ADDRi (i = 0 to 7) macro. The smallest
address (inclusive) is defined by the SYSMAP_BASE_ADDR(i - 1) macro. That is,

SYSMAP_BASE_ADDR(i - 1) <= Address of address space i < SYSMAP_BASE_ADDRi.

The smallest address of address space 0 is 0x0. Page attributes of memory addresses beyond the eight
address spaces defined in the sysmap.h file are cacheable/bufferable/shareable/security by default. The upper
and lower boundaries of each address space is 4 KB aligned. Therefore, the SYSMAP_BASE_ADDRi macro
defines the upper 28 bits of an address.

Page attributes of memory addresses within address space i (i = 0 to 7) are defined by the
SYSMAP_FLAGi (i = 0 to 7) macro. The attribute layout is shown in fig_address_format.

6.1.2 Memory ordering model

C910MP adopts a weak memory ordering model, which is defined as follows:

• Ordering of access to the same address is maintained among multiple cores, including read after read
(RAR), write after write (WAW), write after read (WAR), add read after write (RAW).

• Weak ordering of access to different addresses is allowed among multiple cores, including RAR, WAW,
WAR, add RAW.

www.t-head.cn 57

Chapter 6. Memory Model

• Atomic other-multi-copy is ensured. When a core is able to obtain written data of another core, other
cores must also be able to obtain the data. However, when a core is able to obtain its own written
data, it is not required that other cores be able to obtain the data.

Weak memory ordering causes inconsistency between the actual read/write order among multiple cores
and the access order defined by the program. Therefore, C910 provides extended SYNC instructions to
enforce memory access ordering in software.

SYNC instructions define the execution order of all instructions, ensuring that all instructions preceding
a SYNC instruction are executed before the SYNC instruction. In addition, SYNC instructions can also be
used to synchronize instruction memory. After instructions preceding a SYNC instruction are executed, the
SYNC instruction clears the pipeline and re-fetches instructions. For more information, see Table 6.2.

Table 6.2: SYNC instructions

Mnemonic Description Scope
SYNC.IS Synchronize data and instruction memory Shareable
SYNC.I Synchronize data and instruction memory Non-shareable
SYNC.S Synchronize data memory Shareable
SYNC Synchronize data memory Non-shareable

6.2 MMU

6.2.1 Overview

The memory management unit (MMU) of C910 complies with the RISC-V SV39 standard. It provides the
following features:

• Address translation: Translates 39-bit virtual addresses to 40-bit physical addresses.

• Page protection: Checks the read/write/execution permissions of page visitors.

• Page attribute management: Extends address attribute bits and obtains page attributes based on
access addresses for further processing by the system.

6.2.2 TLB

The MMU uses translation lookaside buffers (TLBs) to implement its features. A TLB stores virtual ad-
dresses used when the CPU accesses the memory. Before translating a virtual address, the MMU checks the
page attributes in the TLB and outputs a physical address corresponding to the virtual address.

The MMU of C910 uses two levels of TLBs: the uTLB at level 1 and the jTLB at level 2. The uTLB
includes the I-uTLB and the D-uTLB. After the CPU is reset, the hardware invalidates all entries in the
uTLB and the jTLB, without the need of initializing software.

www.t-head.cn 58

Chapter 6. Memory Model

The I-uTLB provides 32 fully associative entries for storing pages in 4 KB, 2 MB, or 1 GB size. When an
instruction fetch request hits the I-uTLB, the physical address and the corresponding permission attribute
can be obtained in the current cycle.

The D-uTLB provides 17 fully associative entries for storing pages in 4 KB, 2 MB, or 1 GB size. When
a load/store request hits the D-uTLB, the physical address and the corresponding permission attribute can
be obtained in the current cycle.

The jTLB is a 4-way set-associative cache shared by instructions and data. It provides 1024 entries for
storing pages in 4 KB, 2 MB, or 1 GB size. When a request misses the uTLB but hits the jTLB, the physical
address and the corresponding permission attribute will be returned within at least three cycles.

6.2.3 Address translation process

The MMU is used to translate virtual addresses into physical addresses and check corresponding permissions.
Specific address mappings and corresponding permissions are configured by the operating system and stored
in page tables. C910 implements address translation through indexing by at most three levels of page tables.
The MMU accesses the L1 page table to obtain the base address of an L2 page table and the corresponding
permission attributes, accesses the L2 page table to obtain the base address of an L3 page table and the
corresponding permission attributes, and accesses the L3 page table to obtain the final physical address and
the corresponding permission attributes. The MMU may obtain the final physical address, that is, a leaf
table entry, at each level of access. The virtual page number (VPN) consists of 27 bits and is divided into
three 9-bit VPN[i]. A part of the VPN is used for indexing in each access.

Content of leaf table entries is cached in the TLB to accelerate address translation. The content includes
physical addresses translated from virtual addresses and corresponding permission attributes. If the uTLB
is missed, the MMU accesses the jTLB. If the jTLB is missed, the MMU enables a hardware page table walk
to access the memory to obtain the final address translation result.

A page table stores entry addresses of next-level page tables or physical information of the final page
table. The page table structure is shown below:

Page table structure

Flags: page attributes in bit [9:0]

Features are described in smel register.

Flags: page attributes in bit [63:59]

www.t-head.cn 59

Chapter 6. Memory Model

The custom page attributes of C910, which are available when the MAEE field in the mxstatus
register is enabled. Features are described in smel register.

PPN: physical page number

PPN[i] indicates the PPN corresponding to each level of page table.

The address translation process is described as follows:

If the TLB is hit when the CPU attempts to access a virtual address, the CPU directly obtains the
physical address and the corresponding attributes from the TLB. If the TLB is missed, the MMU performs
the following steps to translate the virtual address:

1. Obtain the access address {satp.PPN, VPN[2], 3’b0} of the L1 page table, and access the D-
Cache/memory based on the address to obtain a 64-bit PTE of the L1 page table.

2. Check whether the PTE conforms to the physical memory protection (PMP) permission. If no,
generate the corresponding access error exception. If yes, determine whether the X/W/R bit meets the
condition of the leaf page table based on the rules shown in Table 6.4 . If yes, the final physical address has
been found. Then go to step 3. If no, obtain the access address {PTE.PPN, next-level VPN, 3’b0} of the
next-level page table, and access the D-Cache/memory again.

3. After the leaf page table is found, compare the X/W/R/L bit in the PMP register with the X/W/R
bit in the PTE to obtain the minimum permissions, check the permissions, and write the content of
the PTE back to jTLB.

4. If permission violation is found in any PMP check, generate the corresponding access error exception
based on the access type.

5. Generate a page fault exception in the following three cases: the leaf page table is found but the
access type does not conform to the setting of the A/D/X/W/R/U bit, no leaf page table is found after
three accesses, or an access error is generated during access to the D-Cache/memory.

6. If the leaf page table is found in less than three accesses, a large page table has been obtained. In this
case, check whether the PPN of the large page table is aligned based on the page size. If no, generate
a page fault exception.

6.2.4 System control registers

In addition to the standard satp register, the MMU of C910 provides the extended smir, smcir, supervisor-
mode (S-mode) entry low (smel), and S-mode entry high (smeh) control registers. You can use the extended
registers to directly read, write, probe, and invalidate the TLB.

6.2.4.1 Supervisor address translation and protection (satp) register

The satp register is an MMU control register defined in the SV39 standard.

Mode: MMU address translation mode

www.t-head.cn 60

Chapter 6. Memory Model

Table 6.3: MMU address translation mode

RV64
Value Name Description
0 Bare No translation or protection
1-7 - Reserved
8 Sv39 Page-based 39-bit virtual addressing
9 Sv48 Page-based 48-bit virtual addressing
10 Sv57 Reserved for page-based 57-bit virtual addressing
11 Sv64 Reserved for page-based 64-bit virtual addressing
12-15 - Reserved

ASID: the current address space identifier (ASID)

Indicates the ASID of the current program.

PPN: root PPN for hardware writeback

Indicates the PPN used for L1 hardware writeback.

6.2.4.2 smcir register

The smcir register enables you to probe, read, write, and invalidate the TLB.

Fig. 6.1: Smcir Register Description

TLBP: TLB probe

Indicates the operation of probing the TLB based on the smeh register.

When the TLB is hit, the value of the smir register is updated to the serial number of the TLB.

TLBR: TLB read

Indicates the operation of reading values of corresponding TLB entries based on indexes in the
smir register, and updating the smeh and smel registers based on the values.

TLBWI: TLB indexed write

www.t-head.cn 61

Chapter 6. Memory Model

Indicates the operation of writing values of the smeh and smel registers to corresponding TLB
entries based on indexes in the smir register.

TLBWR: TLB random write

Indicates the operation of writing values of the smeh and smel registers to corresponding TLB
entries based on indexes in the random register.

TLBIASID: TLB invalidation by ASID

Indicates the operation of invalidating all TLB entries that match the specified ASID.

TLBIALL: TLB initialization

Indicates the operation of invalidating all TLB entries and initializing the TLB.

TLBII: TLB invalidation by index

Indicates the operation of invalidating all TLB entries that match the specified index in the smir
register.

TLBIAW: TLB invalidation by world

Indicates the operation of invalidating all TLB entries corresponding to the trustable or non-
trustable world.

This field is available only when trusted execution environment (TEE) extension is configured.
It has not been implemented in C910.

ASID: the ASID used

Indicates the ASID used for matching in the TLBIASID operation. The smcir register enables
you to probe, read, write, and invalidate the TLB.

TLBP: TLB probe

Indicates the operation of probing the TLB based on the smeh register. When the TLB is hit,
the value of the smir register is updated to the serial number of the TLB.

TLBR : TLB read

Indicates the operation of reading values of corresponding TLB entries based on indexes in the
smir register, and updating the smeh and smel registers based on the values.

TLBWI: TLB indexed write

Indicates the operation of writing values of the smeh and smel registers to corresponding TLB
entries based on indexes in the smir register.

TLBWR: TLB random write

Indicates the operation of writing values of the smeh and smel registers to corresponding TLB
entries based on indexes in the random register.

TLBIASID: TLB invalidation by ASID

www.t-head.cn 62

Chapter 6. Memory Model

Indicates the operation of invalidating all TLB entries that match the specified ASID.

TLBIALL: TLB initialization

Indicates the operation of invalidating all TLB entries and initializing the TLB.

TLBII: TLB invalidation by index

Indicates the operation of invalidating all TLB entries that match the specified index in the smir
register.

ASID: the ASID used

Indicates the ASID used for matching in the TLBIASID operation.

6.2.4.3 smir register

The smir register is used to index the TLB. In TLB probing, the index of a hit entry is updated. In TLB
write indexing, the index field of the smir register is written to write the mapping to the corresponding index
in the jTLB.

Fig. 6.2: Smir Register Descriptions

P – Probe Failure

0: indicates that TLB is hit when the TLBP instruction is executed.

1: indicates that TLB is missed when the TLBP instruction is executed.

Tfatal – Probe multiple

Specifies whether multiple matches occur when the TLBP instruction is executed.

0: indicates that no multiple matches occur.

1: indicates that multiple matches occur.

Index – TLB Index

1024-entry configuration: Index [9:8] is the way index, and index [7:0] is the set/entry index
(4-way, 256 entries).

2048-entry configuration: Index [10:9] is the way index, and index [8:0] is the set/entry index
(4-way, 512 entries).

www.t-head.cn 63

Chapter 6. Memory Model

6.2.4.4 smeh register

The smeh register stores virtual addresses in TLB access and VPNs when TLB exceptions occur. The ASID
indicates the process ID corresponding to the current page.

Fig. 6.3: Smeh Register Descriptions

VPN: the virtual page number

This field is updated by hardware when the TLB is read or a page error exception occurs. Software
writes a value to this field before writing values to TLB entries.

Pagesize: the page size

The page size is indicated by using a one-hot, where 100 indicates a size of 4 KB, 010 indicates
a size of 2 MB, and 001 indicates a size of 1 GB.

This field is updated by hardware when the TLB is read. Software writes a value to this field
before writing values to TLB entries.

ASID: the ASID used

This field stores the ID of the current address space identified by the operating system. It is used
to distinguish between processes.

This field is updated by hardware when the TLB is read. Software writes a value to this field
before writing values to TLB entries.

6.2.4.5 smel register

The smel register stores physical addresses in TLB access and page attributes.

PPN: a 28-bit physical page number

SO – Strong Order

Indicates the access order required by memory.

1’b0: No strong order (Normal memory)

1’b1: Strong order(Device)

C – Cacheable

www.t-head.cn 64

Chapter 6. Memory Model

Fig. 6.4: SMEL Register Descriptions

1’b0: Uncacheable

1’b1: Cacheable

B – Buffer

1’b0: Unbufferable

1’b1: Bufferable

SH – Shareable

Indicates whether the page is shareable.

1’b0: Unshareable

1’b1: Shareable

Sec (T – Trustable)

Indicates whether the page belongs to the trustable or non-trustable world. This bit is available only
when TEE pro extension is configured.

1’b0: non-trustable

1’b1: trustable

RSW – Reserved for Software

A bit reserved for software to implement custom page table features. The default value is 2’b0.

D – Dirty

When the D bit is 1, it indicates whether data can be/has been written to the page.

1’b0: indicates that data has not been written/cannot be written to the page.

1’b1: indicates that data has been written/can be written to the page.

When the D bit is 0, a write operation to the page will trigger a page fault (store) exception. You can
maintain the meanings of values of the D bit in the exception program through software.

A – Accessed

www.t-head.cn 65

Chapter 6. Memory Model

When the A bit is 1, it indicates that the page is accessible. When the A bit is 0, it indicates
that the page is inaccessible. Access to the page will trigger a page fault exception for the
corresponding access type.

1’b0: indicates that the page is accessible.

1’b1: indicates that the page is accessible.

G – Global

The global page ID, which indicates whether the page can be shared by multiple processes.

1’b0: indicates that the page is non-shareable and that the ASID is exclusive.

1’b1: indicates that the page is shareable.

U – User

Indicates whether the page is accessible in user mode (U-mode).

1’b0: indicates that the page is inaccessible in U-mode. Access to the page in U-mode will
trigger a page fault exception. The default value is 1’b0.

1’b1: indicates that the page is accessible in U-mode.

X W R: executable, writable, readable

Table 6.4: XWR permissions

X W R Meaning
0 0 0 Pointer to next level of page table
0 0 1 Read-only page
0 1 0 Reserved for future use
0 1 1 Read-write page
1 0 0 Execute-only page
1 0 1 Read-execute page
1 1 0 Reserved for future page
1 1 1 Read-write-execute page

V – Valid

Indicates whether the physical page has been mapped to a virtual page. If the V bit of a page is
0, access to the page will cause a page fault exception.

1’b0: indicates that the physical page has not been mapped to a virtual page.

1’b1: indicates that the physical page has been mapped to a virtual page.

6.3 PMP

www.t-head.cn 66

Chapter 6. Memory Model

6.3.1 Overview

The PMP unit of C910 complies with the RISC-V standard. The PMP unit checks the access permission on
a physical address to determine whether the CPU has the read/write/execution permissions on the address
in current mode.

The PMP unit of C910 provides the following features:

• Supports eight PMP entries, which are identified and indexed by 0 to 7.

• Supports the minimum address split granularity of 4 KB.

• Supports the OFF, top of range (TOR), and naturally aligned power-of-2 region (NAPOT) address
matching modes, but not the naturally aligned four-byte region (NA4) mode.

• Supports three permissions: readable, writable, and executable.

• Supports software locks for PMP entries.

6.3.2 PMP control registers

A PMP entry consists of an 8-bit configuration register and a 64-bit address register. All PMP control
registers are accessible in M-mode. Access to PMP control registers in other modes will trigger illegal
instruction exceptions.

6.3.2.1 Physical memory protection configuration (pmpcfg) register

The pmpcfg register supports permission configuration for 8 entries.

Fig. 6.5: Layout of the pmpcfg register

Fig. 6.6: pmpcfg register

For more information about the pmpcfg register, see Table 6.5.

www.t-head.cn 67

Chapter 6. Memory Model

Table 6.5: Descriptions of the pmpcfg register

Bit Name Description
0 R The readable attribute of the entry.

0: indicates that the address matching the entry is non-readable.
1: indicates that the address matching the entry is readable.

1 W The writable attribute of the entry.
0: indicates that the address matching the entry is non-writable.
1: indicates that the address matching the entry is writable.

2 X The executable attribute of the entry.
0: indicates that the address matching the entry is non-executable.
1: indicates that the address matching the entry is executable.

4:3 A The address matching mode of the entry.
00: indicates the OFF mode, in which the entry is invalid.
01: indicates the TOR mode, in which the address of the adjacent entry is
used as the matching range.
10: indicates the NA4 mode, in which the matching range is 4 bytes. This
mode is not supported.
11: indicates the NAPOT mode, in which the matching range is a power of 2
and is at least 4 KB.

7 L The lock enable bit of the entry.
0: indicates that access in M-mode will succeed, and
access results in S-mode/U-mode depend on the R/W/X settings.
1: indicates that the entry is locked and cannot be modified.
In TOR mode, the address register of the previous entry cannot be modified
either.
Access results in all modes depend on the R/W/X settings.

In TOR mode, assuming that the access address is A, the condition for hitting entry i is as follows:
pmpaddr(i-1) � A < pmpaddr(i). The lower boundary of entry 0 is 0.

Addresses and corresponding protection region sizes in NAPOT mode are shown in
Protection_region_code.

www.t-head.cn 68

Chapter 6. Memory Model

Table 6.6: Protection region code :name: Protection_region_code

pmpaddr[37:9] pmpcfg.A Protection region size Remarks
a_aaaa_aaaa_aaaa_a aaa_aaaa_aaaa_aaa0 NAPOT 4KB Supported
a_aaaa_aaaa_aaaa_a aaa_aaaa_aaaa_aa01 NAPOT 8KB Supported
a_aaaa_aaaa_aaaa_a aaa_aaaa_aaaa_a011 NAPOT 16KB Supported
a_aaaa_aaaa_aaaa_a aaa_aaaa_aaaa_0111 NAPOT 32KB Supported
a_aaaa_aaaa_aaaa_a aaa_aaaa_aaa0_1111 NAPOT 64KB Supported
a_aaaa_aaaa_aaaa_a aaa_aaaa_aa01_1111 NAPOT 128KB Supported
a_aaaa_aaaa_aaaa_a aaa_aaaa_a011_1111 NAPOT 256KB Supported
a_aaaa_aaaa_aaaa_a aaa_aaaa_0111_1111 NAPOT 512KB Supported

The PMP unit of C910 supports the minimum granularity of 4 KB in NAPOT mode, and does not
support the NA4 mode.

6.3.2.2 Physical memory protection address (pmpaddr) register

The PMP unit provides pmpaddr 0 to pmpaddr 7 for storing physical addresses of entries.

As defined in the RISC-V standard, pmpaddr registers store bit [39:2] of physical addresses. The
PMP unit of C910 supports the minimum granularity of 4 KB. Therefore, bit [8:0] is not used for address
authentication logic.

Fig. 6.7: pmpaddr registers

6.4 Memory access order

The following summarizes the processes of accessing an address space by C910 in different scenarios.

Scenario 1: without VA-PA translation

To access a PA:

• Obtain the address attribute from the sysmap.h file.

• Perform PMP checks to determine whether the XWR permissions conform to the PMP settings.

• Access the address.

Scenario 2: with VA-PA translation

www.t-head.cn 69

Chapter 6. Memory Model

To access a VA:

• Translate the address by using the MMU to obtain the corresponding PTE.

• Obtain the following information from the PTE: the PA, address attribute (Note 1), and XWR per-
missions.

• Perform PMP checks to determine whether the XWR permissions conform to the PMP settings. (The
minimum XWR permissions defined in the PMP register and PTE prevail.)

• Access the address.

(Note 1) When the MAEE field is 1, the address attribute comes from the PTE. When the MAEE field
is 0, the address attribute comes from the sysmap.h file.

www.t-head.cn 70

CHAPTER 7

Memory Subsystem

7.1 Memory Subsystem Overview

Each core of C910 has its own I-Cache and D-Cache. Two cores share one L2 cache. Data coherence among
multiple cores is maintained by hardware.

7.2 L1 I-Cache

7.2.1 Overview

The L1 I-Cache provides the following features:

• Cache size: 64 KB, with a cache line size of 64 bytes, 2-way set-associative;

• Virtually indexed, physically tagged (VIPT);

• Data width for access: 128 bits;

• First-in, first-out (FIFO);

• Invalidation by I-Cache or cache line supported;

• Instruction prefetch supported;

• Way prediction supported;

• D-Cache snooping after a request misses the I-Cache (this feature can be enabled and disabled).

71

Chapter 7. Memory Subsystem

7.2.2 Way prediction

The C910 I-Cache adopts the 2-way set-associative structure. To reduce power consumption in parallel access
to two caches, C910 implements I-Cache way prediction. When way prediction information is valid, access
to invalid data ways is disabled, and the CPU accesses data only in the predicted way. You can configure
the IWPE field in the mhint register to enable I-Cache way prediction.

Way prediction can be classified into the following two types by instruction fetch behavior:

• Sequential access: When the CPU consecutively fetches instructions in a line, the CPU predicts way
information of the current access based on the way hit information of the last access.

• Jump access: A branch instruction obtains way prediction information of the target cache line along
with the jump target address, and accesses one of the caches based on the information.

7.2.3 Loop acceleration buffer

C910 provides a 32-byte loop acceleration buffer to cope with a large number of short loops in programs.
When detecting a short-loop instruction sequence, the CPU loads it to the loop acceleration buffer. When
a subsequent instruction fetch request hits the buffer, the CPU directly obtains the instruction and jump
target address from the buffer and disables access to the I-Cache, branch history table, and branch and jump
target predictor, reducing dynamic power consumption of instruction fetch. You can configure the LPE field
in the mhint register to enable short-loop acceleration.

7.2.4 Branch history table

C910 uses the branch history table to predict jump directions of conditional branch instructions. The
branch history table is 64 KB in size. The bi-mode branch predictor predicts one branch result per cycle.
The branch history table consists of predictors and selectors. The predictors are classified into jump and non-
jump predictors and are maintained in real time based on branch history information. The branch history
table indexes ways based on branch history information and the address of the current branch instruction
to predict the jump direction of the branch instruction.

The branch history table predicts jump directions of the following conditional branch instructions:

BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ

7.2.5 Branch and jump target predictor

The C910 uses the branch and jump target predictor to predict jump target addresses of branch instructions.
The branch and jump target predictor records the historical target addresses of branch instructions. If the
current branch instruction hits the branch and jump target predictor, the recorded target address is used as
the predicted target address of the current branch instruction.

The branch and jump target predictor provides the following features:

www.t-head.cn 72

Chapter 7. Memory Subsystem

• Supports 1024 entries.

• Adopts the 2-way set-associative structure and supports selection and replacement based on the PC in
the lower bits of a branch instruction.

• Maintains I-Cache way prediction information.

• Supports indexing by using a part of the PC of the current branch instruction.

The branch and jump target predictor predicts jump target addresses of the following branch instruc-
tions:

• BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ

• JAL and C.J

7.2.6 Indirect branch predictor

C910 uses the indirect branch predictor to predict target addresses of indirect branch instructions. Indirect
branch instructions obtain target addresses from registers. One indirect branch instruction can contain
multiple branch target addresses, which cannot be predicted by using the conventional branch and jump
target predictor. Therefore, C910 uses the branch history-based indirect branch predictor to associate
historical target addresses of an indirect branch instruction with its branch history information, and discretize
different target addresses of one indirect branch instruction based on different branch history information.
This makes it possible to predict multiple target addresses.

Indirect branch instructions include:

• JALR: except when the source register is x1 or x5

• C.JALR: except when the source register is x5

• C.JR: except when the source register is x1 or x5

7.2.7 Return address predictor

The return address predictor is used to quickly and accurately predict a return address when a function call
ends. When the instruction fetch unit (IFU) obtains a valid function call instruction through decoding, it
pushes a function return address to the return address predictor. When the IFU obtains a valid function
return instruction through decoding, it pulls a function return address from the return address predictor.
The return address predictor supports up to 12 nested function calls. If more than 12 function calls are
nested, a target address prediction error will occur.

• Function call instructions include JAL, JALR, and C.JALR.

• Function return instructions include JALR, C.JR, and C.JALR.

For more information, see Table 7.1.

www.t-head.cn 73

Chapter 7. Memory Subsystem

Table 7.1: Instruction features

rd rs1 rs1=rd RAS action
!link !link - none
!link link - pop
link !link - push
link link 0 push and pop
link link 1 push

7.2.8 Fast jump target predictor

To improve efficiency of the IFU in consecutive jumps, C910 provides a fast jump target predictor at level
1 of the IFU. When the IFU jumps consecutively, the fast jump target predictor records the address of the
second jump instruction and the jump target address. If an instruction fetch request hits the fast jump
target predictor, the IFU starts to jump at level 1, reducing performance loss of at least one cycle.

The fast jump target predictor predicts jump target addresses of the following branch instructions:

• BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ

• JAL and C.J

• Function return instructions

7.3 L1 D-Cache

7.3.1 Overview

The L1 D-Cache provides the following features:

• Cache size: 64 KB, with a cache line size of 64 bytes, 2-way set-associative;

• Physically indexed, physically tagged (PIPT);

• Maximum data width per read access: 128 bits, supporting byte, halfword, word, doubleword, and
quadword access;

• Maximum data width per write access: 256 bits, supporting access to any combinations of bytes;

• Write policies: write-back with write-allocate, and write-back with write-no-allocate;

• First-in, first-out (FIFO);

• Invalidation and clearing by D-Cache or cache line supported;

• Multi-channel data prefetch for instructions.

www.t-head.cn 74

Chapter 7. Memory Subsystem

7.3.2 Cache coherence

For requests with shareable and cacheable page attributes, data coherence between L1 D-Caches of different
cores is maintained by hardware.

For requests with non-shareable and cacheable page attributes, the CPU does not maintain data co-
herence between L1 D-Caches. If non-shareable and cacheable pages need to be shared across cores, data
coherence must be maintained by software.

C910MP maintains data coherence between L1 D-Caches of different cores based on the MESI protocol.
MESI indicates four states of each cache line in the D-Cache:

• M: indicates that the cache line is available only in this D-Cache and has been modified (UniqueDirty).

• E: indicates that the cache line is available only in this D-Cache and has not been modified (Unique-
Clean).

• S: indicates that the cache line may be available in multiple D-Caches and has not been modified
(ShareClean).

• I: indicates that the cache line is not available in this D-Cache (Invalid).

7.3.3 Exclusive access

C910 supports exclusive memory access instructions: LR and SC. You can use the two instructions to
constitute a synchronization primitive such as an atomic lock to synchronize data between different processes
of a core or between different cores. The LR instruction tags the address to be exclusively accessed. The SC
instruction determines whether the tagged address is preempted by other processes. C910 provides a local
monitor in the L1 D-Cache and a global monitor in the L2 cache for each core. Each monitor consists of a
state machine and an address buffer. The state machine has two states: IDLE and EXCLUSIVE.

Exclusive access to a cacheable page can be implemented with the local monitor. When the LR in-
struction is executed, it sets the state machine of the local monitor to the EXCLUSIVE state and stores the
address to be accessed and the size to the buffer. When the SC instruction is executed, it reads the state of
the local monitor, the address, and the size. If the state is EXCLUSIVE and the address exactly matches the
size, the write operation is executed, a write success is returned, and the state machine is reset to the IDLE
state. If the state or the address/size matching does not meet the requirement or the D-Cache is disabled,
the write operation is not executed, a write failure is returned, and the state machine is reset to the IDLE
state. When the write operation of another core performs matching against the local monitor at the same
cache line address, the state machine is also reset to the IDLE state. The write operation in the current core
or exclusive access to a different address does not affect the local monitor. In addition, the local monitor
must be cleared when a process is switched.

Exclusive access to a non-cacheable page is implemented with both the local monitor and the global
monitor. When the LR instruction is executed, it must set both the local monitor and the global monitor.
After the local monitor passes the check, the SC instruction further checks the global monitor. If the global

www.t-head.cn 75

Chapter 7. Memory Subsystem

monitor passes the check, the write operation is executed, a write success is returned, and the state of the
state machine is cleared; otherwise, the write operation is not executed, a write failure is returned, and the
state of the state machine is cleared. When the write operation of another core performs matching against
a global monitor at an address, the state machine of the global monitor is reset to the IDLE state.

In C910-based systems, we recommend that you use the LR and SC instructions to implement atomic
locks. If the address attribute of an atomic lock is cacheable (either shareable or non-shareable), no special
design is required for the SoC system. This is a typical case. If the address attribute of an atomic lock is
non-cacheable, device, or strongly ordered, the system (for example, the slave client) must be integrated with
an exclusive monitor. If an operation is performed in other ways, the response will be UNPREDICTABLE.

7.4 L2 Cache

7.4.1 Overview

The L2 cache provides the following features:

• Cache size: 1 MB, with a cache line size of 64 bytes, 16-way set-associative;

• Strictly inclusive of the L1 D-Cache, and non-strictly inclusive of the L1 I-Cache;

• Physically indexed, physically tagged (PIPT);

• Maximum data width per access: 64 bytes;

• Write policies: write-back with write-allocate, and write-back with write-no-allocate;

• First-in, first-out (FIFO);

• Programmable RAM latency;

• Instruction prefetch and TLB prefetch supported;

• Block-based pipelining.

7.4.2 Cache coherence

The L2 cache of C910MP maintains data coherence between D-Caches of different cores based on the MOESI
protocol. MOESI indicates five states of each cache line in the D-Cache:

• M: indicates that the cache line is available only in this D-Cache and has been modified (UniqueDirty).

• O: indicates that the cache line may be available in multiple D-Caches and has been modified
(ShareDirty).

• E: indicates that the cache line is available only in this D-Cache and has not been modified (Unique-
Clean).

www.t-head.cn 76

Chapter 7. Memory Subsystem

• S: indicates that the cache line may be available in multiple D-Caches and has not been modified
(ShareClean).

• I: indicates that the cache line is not available in this D-Cache (Invalid)

7.4.3 Structure

The L2 cache of C910MP is built on a block-based pipelining architecture. Access addresses are discretized
in two different blocks to allow parallel access and improve access efficiency.

The block mechanism is shown in Fig. 7.1 .

• The tag RAM is divided into two tag sub-blocks by PA[6]: tag bank 0 and tag bank 1, to handle two
access requests in parallel within one clock cycle.

• Similarly, the data RAM is divided into two data sub-blocks by PA[6]: data bank 0 and data bank
1. Each data sub-block is further divided into four 128-bit micro blocks, to obtain one cache line in
parallel.

Fig. 7.1: L2 Cache structure

7.4.4 RAM latency

The L2 cache has a long access latency because it is large in size. It usually takes multiple clock cycles to
complete access to the L2 cache. C910MP enables you to configure the access latency. You can set the setup
time and latency of RAM in different processes. Detailed configurations are shown in Table 7.2 .

www.t-head.cn 77

Chapter 7. Memory Subsystem

Table 7.2: RAM latency configurations

Item Feature Description
L2 TAG setup L2 Cache Tag RAM

setup:
1b0: 0 cycles. Default
value
1b1: 1 cycle.

L2 Cache Tag The RAM setup affects only tags.
The RAM access.

L2 TAG latency L2 Cache Tag RAM la-
tency:
3b000: 1 cycle. Default
value
3b001: 2 cycles.
3b010: 3 cycles.
3b011: 4 cycles.
3b1xx: 5 cycles.

L2 DATA setup L2 Cache Data RAM
setup:
1b0: 0 cycles. Default
value
1b1: 1 cycle.

L2 Cache Data The RAM setup affects only data.
The RAM access.

L2 DATA latency L2 Data RAM latency:
3b000: 1 cycle. Default
value
3b001: 2 cycles.
3b010: 3 cycles.
3b011: 4 cycles.
3b100: 5 cycles.
3b101: 6 cycles.
3b110: 7 cycles.
3b111: 8 cycles.

You can set the latency based on the time required for accessing the RAM. The default value of setup
is 0. When the RAM setup time or winding length is long, you can modify setup to 1.

The number of access cycles with the preceding configurations is shown in Table 7.3.

www.t-head.cn 78

Chapter 7. Memory Subsystem

Table 7.3: Valid access latency of the tag RAM

Tag latency Valid access latency of the tag RAM
/ TAG setup = 0 TAG setup = 1
000 1 2
001 2 3
010 3 4
011 4 5
1xx 5 5

Table 7.4: Valid access latency of the data RAM

Tag latency Valid access latency of the data RAM
/ TAG setup = 0 TAG setup = 1
000 1 2
001 2 3
010 3 4
011 4 5
100 5 6
101 6 7
110 7 8
111 8 8

• The maximum valid L2 tag latency is 5 cycles.

• When tag setup is 1, one more cycle is required for access. Before the SRAM is accessed, the SRAM
input signal will be flopped.

• The maximum valid L2 data latency is 8 cycles.

• When data setup is 1, one more cycle is required for access. Before the SRAM is accessed, the SRAM
input signal will be flopped.

7.5 Accelerated memory access

This section describes the accelerated memory access features of C910 L1 and L2 caches.

7.5.1 Instruction prefetch of the L1 I-Cache

The L1 I-Cache supports instruction prefetch. You can configure the IPLD field in the mhint register to
enable this feature. When an instruction access request misses the current cache line, the next consecutive
cache line is prefetched and stored to the prefetch buffer. When the instruction access request hits the

www.t-head.cn 79

Chapter 7. Memory Subsystem

prefetch buffer, the instruction is directly obtained from the prefetch buffer and written back to the I-Cache,
reducing the instruction fetch latency.

This feature requires that the prefetched cache line and the current accessed cache line be on the same
page, to ensure security of the instruction fetch address. In addition, you cannot allocate read-sensitive
device address spaces to instruction spaces.

7.5.2 Multi-channel data prefetch of the L1 D-Cache

C910 supports data prefetch to reduce the access latency of large-sized memory such as DDR SDRAMs.
C910 detects D-Cache misses to determine a fixed access mode through matching. Then the hardware
automatically prefetches cache lines and writes them back to the L1 D-Cache.

C910 supports data prefetch through up to 8 channels and supports two prefetch methods: consecutive
prefetch and strided prefetch (stride <= 32 cache lines).

C910 also implements forward prefetch and backward prefetch (the stride is negative) to support various
possible access modes.

Data prefetch is disabled when the CPU invalidates or clears the D-Cache.

You can configure the DPLD field in the mhint register to enable data prefetch and the DPLD_DIS
field to determine the number of cache lines to be prefetched at a time.

The following instructions support data prefetch:

• LB, LBU, LH, LHU, LW, LWU, and LD

• FLW and FLD

• LRB, LRH, LRW, LRD, LRBU, LRHU, LRWU, LURB, LURH, LURW, LURD, LURBU, LURHU,
LURWU, LBI, LHI, LWI, LDI, LBUI, LHUI, LWUI, LDD, LWD, and LWUD

7.5.3 L1 adaptive write allocation mechanism

C910 implements adaptive write allocation at L1. When the CPU detects consecutive memory write opera-
tions, the write allocation attribute of pages is automatically disabled.

You can configure the AMR field in the mhint register to enable L1 adaptive write allocation.

When the CPU invalidates or clears the D-Cache, adaptive write allocation is automatically disabled.
After the invalidation or clearing is completed, the CPU detects consecutive memory write operations again.

The following instructions support adaptive write allocation:

• SB, SH, SW, and SD

• FSW and FSD

• SRB, SRH, SRW, SRD, SURB, SURH, SURW, SURD, SBI, SHI, SWI, SDI, SDD, and SWD

www.t-head.cn 80

Chapter 7. Memory Subsystem

7.5.4 L2 prefetch mechanism

The L2 cache supports instruction prefetch and TLB prefetch. It supports the following prefetch features:

• The number of instructions prefetched at a time is software-configurable and can be 0, 1, 2, or 3. All
prefetched instructions are written back to the L2 cache.

• Only one entry is prefetched from the TLB at a time.

• The prefetch range is a 4 KB page table, and addresses beyond the range will not be prefetched.

• You can use the machine-mode (M-mode) L2-cache control register (mccr2) to configure the prefetch
mechanism.

7.6 L1/L2 cache operation instructions and registers

After the CPU is reset, the I-Cache and D-Cache are automatically invalidated and disabled by default.

Similarly, after the CPU is reset, the L2 cache is automatically invalidated. After the invalidation is
completed, the L2 cache is automatically enabled and cannot be disabled. When the L1 cache is disabled,
no data is written back to the L2 cache if the L2 cache is missed.

7.6.1 Extended registers of the L1 cache

Extended registers of the C910 L1 cache are classified into the following types by feature:

• Cache enable and mode configuration: The M-mode hardware configuration register (mhcr) allows you
to enable/disable the I-Cache/D-Cache and configure the write allocation and writeback modes. The
supervisor-mode (S-mode) hardware configuration register (shcr) is a read-only register mapped to the
mhcr register.

• Dirty page table entry clearing and invalidation: The M-mode cache operation register (mcor) allows
you to clear and invalidate dirty page table entries in the I-Cache and the D-Cache.

• Cache read: The machine-mode cache access instruction register (mcins), M-mode cache access index
register (mcindex), and M-mode cache access data register 0/1 (mcdata0/1) allow you to read data
from the I-Cache and the D-Cache.

For more information, see M-mode CPU control and status extension registers and M-mode cache access
extension registers.

7.6.2 Extended registers of the L2 cache

Extended registers of the C910 L2 cache are classified into the following types by feature:

www.t-head.cn 81

Chapter 7. Memory Subsystem

• L2 cache enable and latency configuration: The mccr2 register allows you to set the access latency of
the L2 cache.

• L2 cache read: The mcins, mcindex, and mcdata0/1 registers allow you to read data from the L2 cache.

For more information, see M-mode CPU control and status extension registers and M-mode cache access
extension registers.

7.6.3 L1/L2 cache operation instructions

C910 provides extended L1/L2 cache operation instructions that invalidate page table entries by address,
invalidate all page table entries, clear dirty page table entries by address, clear all dirty page table entries,
clear and invalidate dirty page table entries by address, and clear and invalidate all dirty page table entries.
For more information, see Table 7.5 .

Table 7.5: L1/L2 cache operation instructions

ICACHE.IALL Invalidates all page table entries in the I-Cache.
ICACHE.IALLS Invalidates all page table entries in the I-Cache through broadcasting.
ICACHE.IPA Invalidates page table entries that match the specified physical addresses in the I-Cache.
ICACHE.IVA Invalidates page table entries that match the specified virtual addresses in the I-Cache.
DCACHE.CALLClears all dirty page table entries in the D-Cache.
DCACHE.CIALLClears and invalidates all dirty page table entries in the D-Cache.
DCACHE.CIPA Clears dirty page table entries that match the specified physical addresses in the D-Cache

and invalidates the entries.
DCACHE.CISWClears dirty page table entries in the D-Cache based on the specified way and set and

invalidates the entries.
DCACHE.CIVAClears dirty page table entries that match the specified virtual addresses in the D-Cache

and invalidates the entries.
DCACHE.CPA Clears dirty page table entries that match the specified physical addresses in the D-Cache.
DCACHE.CPAL1Clears dirty page table entries that match the specified physical addresses in the L1 D-

Cache.
DCACHE.CVA Clears dirty page table entries that match the specified virtual addresses in the D-Cache.
DCACHE.CSW Clears dirty page table entries in the D-Cache based on the specified way and set.
DCACHE.CVAL1Clears dirty page table entries that match the specified virtual addresses in the L1 D-

Cache.
DCACHE.IPA Invalidates page table entries that match the specified physical addresses in the D-Cache.
DCACHE.ISW Invalidates page table entries in the D-Cache based on the specified way and set.
DCACHE.IVA Invalidates page table entries that match the specified virtual addresses in the D-Cache.
DCACHE.IALL Invalidates all page table entries in the D-Cache.
L2CACHE.CALLClears all dirty page table entries in the L2 cache.
L2CACHE.CIALLClears all dirty page table entries in the L2 cache and invalidates the entries.
L2CACHE.IALLInvalidates all dirty page table entries in the L2 cache.

www.t-head.cn 82

Chapter 7. Memory Subsystem

For more information, see Appendix B-1 Cache instructions.

www.t-head.cn 83

CHAPTER 8

Interrupt Controllers

8.1 Core local interrupt (CLINT) controller

C910 implements the CLINT controller. It is a memory address mapping module that handles software and
timer interrupts.

8.1.1 CLINT register address mapping

The CLINT controller occupies a 64 KB memory space. Addresses in the upper 13 bits depend on the SoC
hardware integration. Address mapping in the lower 27 bits is shown in Table 8.1. All registers support only
access to word-aligned addresses.

84

Chapter 8. Interrupt Controllers

Table 8.1: Memory-mapped addresses in CLINT registers

Address Name Type Initial value Description
0x4000000 MSIP0 Read/Write0x00000000 The machine-mode (M-mode) software

interrupt pending register for core 0.
The upper bits are tied to 0, and bit [0]
is valid.

0x4000004 MSIP1 Read/Write0x00000000 The M-mode software interrupt
pending register for core 1. The upper
bits are tied to 0, and bit [0] is valid.

Reserved - - - -
0x4004000 MTIMECMPL0 Read/Write0xFFFFFFFF The M-mode clock timer

compare value register (the lower 32
bits) for core 0.

0x4004004 MTIMECMPH0 Read/Write0xFFFFFFFF The M-mode clock timer
compare value register (the upper 32
bits) for core 0.

0x4004008 MTIMECMPL1 Read/Write0xFFFFFFFF The M-mode clock timer
compare value register (the lower 32
bits) for core 0.

0x400400C MTIMECMPH1 Read/Write0xFFFFFFFF The M-mode clock timer
compare value register (the upper 32
bits) for core 0.

Reserved - - - -
0x400C000 SSIP0 Read/Write0x00000000 The supervisor-mode (S-mode) software

interrupt
pending register for core 1. The upper
bits are tied to 0, and bit [0] is valid.

0x400C004 SSIP1 Read/Write0x00000000 The S-mode software interrupt pending
register for core 1.
The upper bits are tied to 0, and bit [0]
is valid.

Reserved - - - -
0x400D000 STIMECMPL0 Read/Write0xFFFFFFFF The S-mode clock timer compare value

register (the lower 32 bits) for core 0.
0x400D004 STIMECMPH0 Read/Write0xFFFFFFFF The S-mode clock timer compare value

register (the upper 32 bits) for core 0.
0x400D008 STIMECMPL1 Read/Write0xFFFFFFFF The S-mode clock timer compare value

register (the lower 32 bits) for core 0.
0x400D00C STIMECMPH1 Read/Write0xFFFFFFFF The S-mode clock timer compare value

register (the upper 32 bits) for core 0.
Reserved - - - -

www.t-head.cn 85

Chapter 8. Interrupt Controllers

8.1.2 Software interrupts

The CLINT controller can generate software interrupts.

Software interrupts are controlled by the software interrupt pending registers configured with address
mappings. M-mode software interrupts are controlled by the machine software interrupt pending (MSIP)
register. S-mode software interrupts are controlled by the supervisor software interrupt pending (SSIP)
register.

You can set the xSIP bit to 1 to generate software interrupts or reset it to 0 clear software inter-
rupts. CLINT S-mode software interrupt requests are valid only when the CLINTEE bit is enabled for the
corresponding core.

In M-mode, the CPU is allowed to access and modify all software interrupt registers. In S-mode, the
CPU is allowed to access and modify only the SSIP register. In user mode (U-mode), the CPU has no access
to software interrupt registers.

The two groups of registers have the same structure. The bit layout and definition of the registers are
shown in fig_msip .

MSIP: the machine software interrupt pending bit

This bit indicates the status of M-mode software interrupts.

• When the MSIP bit is 1, valid M-mode software interrupt requests are available.

• When the MSIP bit is 0, no valid M-mode software interrupt requests are available.

SSIP register

SSIP: the supervisor software interrupt pending bit

This bit indicates the status of S-mode software interrupts.

• When the SSIP bit is 1, valid S-mode software interrupt requests are available.

• When the SSIP bit is 0, no valid S-mode software interrupt requests are available.

8.1.3 Timer interrupts

The CLINT controller can generate timer interrupts.

A multi-core system has only one 64-bit system timer, mtime. mtime must run in the always-on voltage
domain. mtime cannot be written but can be reset. The current value of mtime can be read from the time

www.t-head.cn 86

Chapter 8. Interrupt Controllers

register of the performance monitoring unit (PMU). mtime is used to provide a unified time reference for
multiple cores.

Each core has a group of 64-bitM-mode clock timer compare value registers (mtimecmpl and mtimecmph)
and *a group of 64-bit S-mode clock timer compare value registers *(stimecmpl and stimecmph). You can
modify the upper or lower 32 bits of these registers through word-aligned address access.

The CLINT controller compares the value of {CMPH[31:0], CMPL[31:0]} with the current value of
mtime to determine whether to generate a timer interrupt. When the value of {CMPH[31:0], CMPL[31:0]}
is greater than the current value of mtime, the CLINT controller does not generate an interrupt. When
the value of {CMPH[31:0], CMPL[31:0]} is less than or equal to the current value of mtime, the CLINT
controller generates a corresponding timer interrupt. You can rewrite the value of the mtimecmp/stimecmp
register to clear the corresponding timer interrupt. S-mode timer interrupt requests are valid only when the
CLINTEE bit is enabled for the corresponding core.

In M-mode, the CPU is allowed to access and modify all timer interrupt registers. In S-mode, the CPU
is allowed to access and modify only the stimecmpl and stimecmph registers. In U-mode, the CPU has no
access to timer interrupt registers.

The two groups of registers have the same structure. The bit layout and definition of the registers are
shown in :numref:‘fig_CLICFIG3 .

mtimecmph/mtimecmpl registers

• mtimecmph/mtimecmpl: the M-mode clock timer compare value registers for the upper
bits and the lower bits

These registers store timer compare values.

• mtimecmph: stores the upper 32 bits of timer compare values.

• mtimecmpl: stores the lower 32 bits of timer compare values.

stimecmph/stimecmpl registers

• stimecmph/stimecmpl: the S-mode clock timer compare value registers for the upper bits
and the lower bits

These registers store timer compare values.

• stimecmph: stores the upper 32 bits of timer compare values.

www.t-head.cn 87

Chapter 8. Interrupt Controllers

• stimecmpl: stores the lower 32 bits of timer compare values.

8.2 Platform-level interrupt controller (PLIC)

The PLIC controls sampling, priority arbitration, and distribution of external interrupt sources.

In the PLIC model, the M-mode and S-mode of each core can act as valid interrupt targets.

The PLIC of C910 provides the following features:

• Interrupt distribution for two cores and four interrupt targets;

• Sampling of 144 interrupt sources, supporting level and pulse interrupts;

• 32 interrupt priorities;

• Independent enable for each interrupt target;

• Independent interrupt threshold for each interrupt target;

• Configurable access permissions on PLIC registers.

8.2.1 Interrupt arbitration

In the PLIC, only interrupt sources that meet the specified conditions are involved in arbitration on an
interrupt target. The conditions include:

• The interrupt source is in the pending state (IP = 1).

• The interrupt priority is greater than 0.

• The enable bit for the interrupt target is enabled.

When multiple interrupts for an interrupt target are in the pending state, the PLIC selects the interrupt
with the highest priority through arbitration. In the PLIC of C910, M-mode interrupts have higher priorities
than S-mode interrupts. In the same privilege mode, a larger value of the priority configuration register
indicates a higher priority. Interrupts with a priority of 0 are invalid. If multiple interrupts have the same
priority, they will be handled in ascending order of IDs.

The PLIC stores interrupt IDs that are determined based on arbitration results to the interrupt
claim/complete register of the corresponding interrupt target.

8.2.2 Interrupt request and response

When the PLIC has a valid interrupt request for an interrupt target and the interrupt priority is higher than
the interrupt threshold of the interrupt target, the PLIC sends the interrupt request to the interrupt target.
When receiving the interrupt request, the interrupt target sends an interrupt response message to the PLIC
if it is able to respond to the interrupt request.

www.t-head.cn 88

Chapter 8. Interrupt Controllers

The interrupt response mechanism functions as follows:

• The interrupt target initiates a read operation to the corresponding interrupt claim/complete register.
The read operation returns the interrupt ID determined by the PLIC. The interrupt target proceeds
to further processing based on the interrupt ID. If the interrupt ID is 0, no valid interrupt request is
available, and the interrupt target ends the interrupt handling process.

• After receiving the read operation initiated by the interrupt target and returning the interrupt ID, the
PLIC resets the IP bit of the interrupt source corresponding to the interrupt ID, and blocks subsequent
sampling on the interrupt source before the current interrupt is completed.

8.2.3 Interrupt completion

After interrupt handling is completed, the interrupt target sends an interrupt completion message to the
PLIC. The interrupt completion mechanism functions as follows:

• The interrupt target initiates a write operation to the corresponding interrupt claim/complete register,
to write the ID of the completed interrupt to the register. If the interrupt is a level interrupt, the
external interrupt source must be cleared before the write operation is initiated.

• After receiving the interrupt completion message, the PLIC does not update the interrupt
claim/complete register, but unblocks sampling on the interrupt source corresponding to the inter-
rupt ID to end the interrupt handling process.

8.2.4 PLIC register address mapping

The PLIC occupies a 64 MB memory space. Addresses in the upper 13 bits depend on the SoC hardware
integration. Address mapping in the lower 27 bits is shown in Table 8.2. All registers support only access to
word-aligned addresses. PLIC registers are accessible through the load word instruction. Access results are
placed in the lower 32 bits of 64-bit GPRs.

Note: Registers not supported by C910 are marked as reserved.

Table 8.2: PLIC register address mapping

Address Name Type Initial
value

Described

0x0000000 - - - -
0x0000004 PLIC_PRIO1 R/W 0x0 The

priority configuration register for inter-
rupts 1 to 1023.

0x0000008 PLIC_PRIO2 R/W 0X0
0x000000C PLIC_PRIO3 R/W 0x0
⋯ ⋯ ⋯ ⋯
0x0000FFC PLIC_PRIO1023 R/W 0x0

Continued on next page

www.t-head.cn 89

Chapter 8. Interrupt Controllers

Table 8.2 – continued from previous page
Address Name Type Initial

value
Described

0x0001000 PLIC_IP0 R/W 0x0 The
interrupt pending register for interrupts
1 to 31.

0x0001004 PLIC_IP1 R/W 0x0 The
interrupt pending register for interrupts
1 to 31.

⋯ ⋯ ⋯ ⋯ ⋯

0x000107C PLIC_IP31 R/W 0x0 The
interrupt pending register for interrupts
1 to 31.

Reserved - - - -
0x0002000 PLIC_H0_MIE0 R/W 0x0 The

M-mode interrupt enable register for in-
terrupts 1 to 31 in core 0.

0x0002004 PLIC_H0_MIE1 R/W 0x0 The
M-mode interrupt enable register for in-
terrupts 32 to 63 in core 0.

⋯| ⋯| ⋯| ⋯| ⋯
0x000207C PLIC_H0_MIE31 R/W 0x0 The

M-mode interrupt enable register for in-
terrupts 32 to 63 in core 0.

0x0002080 PLIC_H0_SIE0 R/W 0x0 The
S-mode
interrupt enable register for interrupts 1
to 31 in core 0.

0x0002084 PLIC_H0_SIE1 R/W 0x0 The
S-mode
interrupt enable register for interrupts 1
to 31 in core 0.

⋯| ⋯| ⋯| ⋯| ⋯
0x00020FC PLIC_H0_SIE31 R/W 0x0 The

S-mode interrupt enable register for in-
terrupts 992 to 1023 in core 0.

0x0002100 PLIC_H1_MIE0 R/W 0x0 The
M-mode interrupt enable register for in-
terrupts 1 to 31 in core 0.

Continued on next page

www.t-head.cn 90

Chapter 8. Interrupt Controllers

Table 8.2 – continued from previous page
Address Name Type Initial

value
Described

0x0002104 PLIC_H1_MIE1 R/W 0x0 The
M-mode interrupt enable register for in-
terrupts 1 to 31 in core 0.

⋯| ⋯| ⋯| ⋯| ⋯
0x000217C PLIC_H1_MIE31 R/W 0x0 The

M-mode interrupt enable register for in-
terrupts 1 to 31 in core 0.

0x0002180 PLIC_H1_SIE0 R/W 0x0 The
S-mode
interrupt enable register for interrupts 1
to 31 in core 1.

0x0002184 PLIC_H1_SIE1 R/W 0x0 The
S-mode
interrupt enable register for interrupts 1
to 31 in core 1.

⋯| ⋯| ⋯| ⋯| ⋯
0x00021FC PLIC_H1_SIE31 R/W 0x0 The

S-mode interrupt enable register for in-
terrupts 992 to 1023 in core 1.

Reserved - - - -
0x01FFFFC PLIC_PER R/W 0x0 The PLIC permission control register.
0x0200000 PLIC_H0_MTH R/W 0x0 The M-mode interrupt

threshold register for core 0.
0x0200004 PLIC_H0_MCLAIMR/W 0x0 The M-mode interrupt

claim/complete register for core 0.
Reserved - - - -
0x0201000 PLIC_H0_STH R/W 0x0 The S-mode interrupt

threshold register for core 0.
0x0201004 PLIC_H0_SCLAIM R/W 0x0 The S-mode interrupt

claim/complete register for core 0.
Reserved - - - -
0x0202000 PLIC_H1_MTH R/W 0x0 The M-mode interrupt

threshold register for core 0.
0x0202004 PLIC_H1_MCLAIMR/W 0x0 The M-mode interrupt

claim/complete register for core 0.
Reserved - - - -

Continued on next page

www.t-head.cn 91

Chapter 8. Interrupt Controllers

Table 8.2 – continued from previous page
Address Name Type Initial

value
Described

0x0203000 PLIC_H1_STH R/W 0x0 The S-mode interrupt
threshold register for core 0.

0x0203004 PLIC_H1_SCLAIM R/W 0x0 The S-mode interrupt
claim/complete register for core 0.

Reserved - - - -

8.2.5 PLIC_PRIO register

This register is used to set the priorities of interrupt sources. Register read and write permissions For more
information, see the descriptions of the PLIC_PER register. The bit layout and definition of the register
are shown in fig_plic_prio .

• PRIO: the interrupt priority

The lower 5 bits of the PLIC_PRIO register are writable. The PLIC_PRIO register supports 32
interrupt priorities. Interrupts with a priority of 0 are invalid.

M-mode interrupts have higher priorities than S-mode interrupts in any conditions. In the same privilege
mode, the priority 1 is the lowest priority, and the priority 31 is the highest priority. When multiple interrupts
have the same priority, interrupt IDs are further compared. An interrupt with a smaller ID has a higher
priority.

8.2.6 PLIC_IP register

The PLIC can read the PLIC_IP register to obtain the pending state of each interrupt. If the ID of
an interrupt is N, the interrupt information is stored in IP y (y = N mod 32) in the PLIC_IP x (x =
N/32) register. Bit 0 of the PLIC_IP0 register is tied to 0. Register read and write permissions For more
information, see the descriptions of the PLIC_PER register. The bit layout and definition of the register
are shown in Fig. 8.1 .

Fig. 8.1: PLIC_IP x register

• IP: the interrupt pending state bit

www.t-head.cn 92

Chapter 8. Interrupt Controllers

This bit indicates the interrupt pending state of the corresponding interrupt source.

• When the IP bit is 1, the interrupt source has pending interrupts. You can run a memory store
instruction to set this bit to 1. When the sampling logic of the interrupt source detects valid level or
pulse interrupts, this bit is also set to 1.

• When the IP bit is 0, the interrupt source has no pending interrupt. You can run a memory store
instruction to reset this bit. After an interrupt is handled, PLIC clears the corresponding IP bit.

8.2.7 PLIC_IE register

Each interrupt target has an interrupt enable bit for each interrupt source, to enable the corresponding
interrupts. The M-mode interrupt enable register is used to enable M-mode external interrupts. The S-
mode interrupt enable register is used to enable S-mode external interrupts.

If the ID of an interrupt is N, the interrupt enable information is stored in IE y (y = N mod 32) in the
PLIC_IE x (x = N/32) register. The IE bit corresponding to ID 0 is set to 0. For more information about
the read and write permissions on the register, see the descriptions of the PLIC_PER register.

The bit layout and definition of the register are shown in Fig. 8.2.

Fig. 8.2: PLIC_IE x register

• IE: the interrupt enable state bit

This bit indicates the interrupt enable state of the corresponding interrupt source.

• When the IE bit is 1, the interrupt source is enabled for the interrupt target.

• When the IE bit is 0, the interrupt source is disabled for the interrupt target.

8.2.8 PLIC_PER register

The PLIC_PER register is used to control access permissions on PLIC registers in S-mode.

PLIC_PER register

• S_PER: the access permission control bit

When the S_PER bit is 0, the CPU has access to all PLIC registers only in M-mode. In S-mode, the
CPU has access only to the S-mode PLIC_TH register and S-mode PLIC_CLAIM register, but not to the

www.t-head.cn 93

Chapter 8. Interrupt Controllers

PLIC_PER, PLIC_PRIO, PLIC_IP, or PLIC_IE register. In U-mode, the CPU has no access to any PLIC
registers.

When the S_PER bit is 1, the CPU has access to all PLIC registers in M-mode, and has access to all
PLIC registers except PLIC_PER in S-mode. In U-mode, the CPU has no access to any PLIC registers.

8.2.9 PLIC_TH register

Each interrupt target has a PLIC_TH register. The PLIC initiates an interrupt request to an interrupt target
only when the interrupt request is valid and the interrupt priority is higher than the interrupt threshold of
the interrupt target. For more information about the read and write permissions on the register, see the
descriptions of the PLIC_PER register.

The bit layout and definition of the register are shown in fig_plic_th .

• PRIOTHRESHOLD: the priority threshold

This bit indicates the interrupt threshold of the current interrupt target. When the interrupt threshold
is 0, all interrupts are allowed.

8.2.10 PLIC_CLAIM register

Each interrupt target has a PLIC_CLAIM register. When the PLIC completes arbitration, this register is
updated to the interrupt ID obtained in the current arbitration. For more information about the read and
write permissions on the register, see the descriptions of the PLIC_PER register.

The bit layout and definition of the register are shown in Fig. 8.3 .

Fig. 8.3: PLIC_CLAIM register

• CLAIM_ID: the interrupt request ID

A read operation to the register returns the ID currently stored in the register. The read operation
indicates that the interrupt corresponding to the ID is in the process of handling. The PLIC starts the
interrupt claim process.

www.t-head.cn 94

Chapter 8. Interrupt Controllers

A write operation to the register indicates that the interrupt corresponding to the ID to be written
has been handled. The write operation does not update the PLIC_CLAIM register. The PLIC starts the
interrupt complete process.

8.3 Multi-core interrupts

This section describes two common multi-core interrupt scenarios.

8.3.1 Multiple cores respond to external interrupts in parallel

In the PLIC model, one interrupt source can be mapped to multiple cores. When the interrupt source gener-
ates an interrupt request, the interrupt request is in the pending state with respect to multiple cores. Different
cores run in different states, and they respond to the interrupt successively and read the PLIC_CLAIM regis-
ter to obtain the interrupt ID. Design of the PLIC ensures that only the first core accessing the PLIC_CLAIM
register obtains the valid ID, and other cores obtain an invalid ID (ID = 0) and therefore do not handle the
interrupt. In this case, the interrupt is handled only once.

Mapping an interrupt to multiple cores reduces the overall interrupt response time because any one
of the cores has an opportunity to handle the interrupt. However, bandwidth of the cores that obtain the
invalid ID is consumed, wasting additional CPU resources.

8.3.2 Send software interrupts across cores

In the programming model of the CLINT controller, software interrupts are stored in dedicated registers:

• M-mode software interrupts are stored in the MSIP0 and MSIP1 registers.

• S-mode software interrupts are stored in the SSIP0 and SSIP1 registers.

Addresses of the preceding registers are unified and known to all cores. Each core can initiate write
operations to the registers to send software interrupts to other cores or itself.

www.t-head.cn 95

CHAPTER 9

Bus Interface

9.1 AXI master device interface

The master device interface of C910MP supports the AMBA 4.0 AXI protocol. For more information, see
AMBA Specifications —AMBA® AXI™ and ACE™ Protocol Specification.

9.1.1 Features of the AXI master device interface

The AXI master device interface controls address accesses and data transmission between C910 and the AXI
bus. It provides the following features:

• Complies with the AMBA 4.0 AXI protocol.

• Supports a bus width of 128 bits.

• Supports different frequency ratios between the system clock and the CPU master clock.

• Supports flop-out of all output signals and flop of all input signals to obtain better timing.

9.1.2 Outstanding capability of the AXI master device interface

This section describes the outstanding capability of the AXI master device interface provided by C910.

96

Chapter 9. Bus Interface

Table 9.1: Outstanding capability of the AXI master device inter-
face

Parameter Value Description
Read Issuing Capability 8n+28

n = Number of
cores

Each core can issue up to 8 non-cacheable and de-
vice read requests. All cores can issue up to 28
cacheable read requests.

Write Issuing Capability 8n+32
n = Number of
cores

Each core can issue up to 8 non-cacheable and de-
vice write requests. All cores can issue up to 32
cacheable write requests.

Table 9.2: AWID encoding of the AXI master device interface

AWID[7:0] Scenario Outstanding requests of each ID
{3’b111, 5’b?????} Cacheable write requests Each ID has no outstanding requests.

All cacheable write requests are out-
standing. A total of 32 outstanding re-
quests are supported.

{4’b0000, 4’b????} Non-cacheable and weak-
ordered write requests

Each ID has no outstanding requests.
All non-cacheable and weak-ordered
write requests are outstanding. A to-
tal of 16 outstanding requests are sup-
ported.

{1’b0, 2’b(coreid), 5’h1d} Non-cacheable and strong-
ordered write requests

Non-cacheable and strong-ordered write
requests are outstanding. A total of 31
outstanding requests are supported.

Note: The ARID and AWID encoding may vary with evolution of the CPU version. Therefore, SoC
integration should not depend on specific IDs, but should conform to general-purpose rules of the AXI
protocol.

9.1.3 Supported transmission types

The AXI master device interface supports the following transmission types:

• Burst types: INCR and WRAP;

• Transmission lengths: 1 and 4;

• Exclusive access;

• Transmission sizes: quadword, doubleword, word, halfword, and byte;

• Read and write.

www.t-head.cn 97

Chapter 9. Bus Interface

Note: The AXI master device interface of C910 implements only a subset of all AXI transmission
types. Therefore, SoC integration should not depend on specific transmission types, but should conform to
general-purpose rules of the AXI protocol.

9.1.4 Supported response types

The AXI master device interface supports the following types of responses from slave devices:

• OKAY

• EXOKAY

• SLVERR

• DECERR

9.1.5 CPU behavior in different bus responses

CPU behavior in different bus responses is shown in Table 9.3.

Table 9.3: Bus exception handling

RRESP/BRESP Result
OKAY Indicates that common transfer access succeeds or exclusive transfer ac-

cess fails. If exclusive read transfer access fails, it indicates that the
bus does not support exclusive transfer, and an access error exception is
generated. If exclusive write transfer access fails, it indicates that lock
preemption fails, and no exception is generated.

EXOKAY Indicates that exclusive access succeeds.
SLVERR/DECERR Indicates that an access error occurs. If this error occurs in read transfer,

an exception is generated. If this error occurs in write transfer, it is
ignored.

9.1.6 Signals supported by the AXI master device interface

Signals supported by the AXI4 master device interface are described in Table 9.4.

Table 9.4: Signals supported by AXI channels

Signal name I/O Reset Definition
Interface related to the address read channel
biu_pad_arid[7:0] O 0 The address ID of the read request.
biu_pad_araddr[39:0] O 0 The address of the read request.

Continued on next page

www.t-head.cn 98

Chapter 9. Bus Interface

Table 9.4 – continued from previous page
Signal name I/O Reset Definition
biu_pad_arlen[1:0] O 0 The burst length of the read re-

quest.
00: 1 transfer
11: 4 transfers

biu_pad_arsize[2:0] O 0 The data bit width per cycle of the
read request.
000: 1 byte
001: 2 bytes
010: 4 bytes
011: 8 bytes
100: 16 bytes

biu_pad_arburst[1:0] O 0 The transfer type corresponding to
the read request:
01: INCR
10: WRAP

biu_pad_arlock O 0 The access method corresponding
to the read request:
0: normal access
1: exclusive access

biu_pad_arcache[3:0] O 0 The memory access type corre-
sponding to the read request:
0000: device no n-bufferable
(strong order)
0001: device bufferable (strong or-
der)
0011: normal non-cacheable buffer-
able (weak order)
1111: cacheable

biu_pad_arprot[2:0] O 0 The protection type of the read re-
quest:
0 | 1
[2]: data | instruction
[1]: secure | n on-secure. The value
is always 1.
[0]: user | privileged

Continued on next page

www.t-head.cn 99

Chapter 9. Bus Interface

Table 9.4 – continued from previous page
Signal name I/O Reset Definition
biu_pad_aruser[2:0] O 0 The user-defined signal of the read

request:
[2]: L2 Cache prefetch request
[1]: machine-mode (M-mode) re-
quest
[0]: MMU writeback request

biu_pad_arvalid O 0 The valid signal of the address read
channel.

pad_biu_arready I - The slave ready signal of the ad-
dress read channel.

Interface related to the data read channel
pad_biu_rid[7:0] I - The data ID of the read request.
pad_biu_rdata[127:0] I - The data of the read request.
pad_biu_rresp[3:0] I - The response information of the

read request.
[1:0]: 00: OKAY
01: EXOKAY
10: SLVERR
11: DECERR
[2]: PASSDIRTY
[3]: ISSHARED

pad_biu_rlast I - Data of the last cycle of the read
request.

pad_biu_rvalid I - The valid signal of the data read
request.

biu_pad_rready O 1 The ready information of the data
read channel.

Interface related to the address write channel
biu_pad_awid[7:0] O 0 The address ID of the write re-

quest.
biu_pad_awaddr[39:0] O 0 The address of the write request.
biu_pad_awlen[1:0] O 0 The burst length of the write re-

quest.
00: 1 cycle
11: 4 cycles

Continued on next page

www.t-head.cn 100

Chapter 9. Bus Interface

Table 9.4 – continued from previous page
Signal name I/O Reset Definition
biu_pad_awsize[2:0] O 0 The data bit width per cycle of the

write request.
000: 1 byte
001: 2 bytes
010: 4 bytes
011: 8 bytes
100: 16 bytes

biu_pad_awburst[1:0] O 0 The transfer type corresponding to
the read request:
01: INCR
10: WRAP

biu_pad_awlock O 0 The access method corresponding
to the read request:
0: normal access
1: exclusive access

biu_pad_awcache[3:0] O 0 The memory access type corre-
sponding to the read request:
0000: device no n-bufferable
(strong order)
0001: device bufferable (strong or-
der)
0011: normal non-cacheable buffer-
able (weak order)
0111: write-back no-allocate
1111: write-back cacheable

biu_pad_awprot[2:0] O 0 The protection type of the write re-
quest:
0 | 1
[2]: data | instruction
[1]: secure | n on-secure. The value
is always 1.
[0]: user | privileged

biu_pad_awvalid O 0 The valid signal of the address
write channel.

pad_biu_arready I - The slave ready signal of the ad-
dress read channel.

Interface related to the data write channel
biu_pad_wdata[127:0] O 0 The data of the write request.

Continued on next page

www.t-head.cn 101

Chapter 9. Bus Interface

Table 9.4 – continued from previous page
Signal name I/O Reset Definition
biu_pad_wstrb[15:0] O 0 The valid data fields of the data.
biu_pad_wlast O 0 Data of the last cycle.
biu_pad_wvalid O 0 The valid signal of the data write

channel.
biu_pad_wready I - The slave ready signal of the ad-

dress read channel.
Interface related to the write response channel
pad_biu_bid[7:0] I - The ID of the write response.
pad_biu_bresp[1:0] I - The write response information,

which is
the response information of the
write request.
[1:0]: 00: OKAY
01: EXOKAY
10: SLVERR
11: DECERR

pad_biu_bvalid I - The valid signal of the write re-
sponse channel.

biu_pad_bready O 1 The ready signal of the write re-
sponse channel.

www.t-head.cn 102

CHAPTER 10

Debug

10.1 Features of the debug unit

The debug interface provides an interaction channel between software and the CPU. You can call the debug
interface to obtain information stored in registers and memory of the CPU and information about other
on-chip devices. You can also call the debug interface to download programs.

C910MP supports the JTAG communication protocol (also known as JTAG5) compatible with the IEEE-
1149.1 standard. It can be integrated with existing JTAG components or independent JTAG controllers.

The debug interface provides the following features:

• Supports debug by using standard JTAG interfaces.

• Supports synchronous and asynchronous debug, enabling the CPU to enter the debug mode in extreme
conditions.

• Supports software breakpoints.

• Supports multiple memory breakpoints.

• Enables you to check and set the values of CPU registers.

• Enables you to check and modify memory values.

• Enables the CPU to run an instruction in a single step or multiple steps.

• Enables you to quickly download programs.

• Enables the CPU to enter the debug mode after it is reset.

103

Chapter 10. Debug

Debug of C910 is jointly completed by the debug software, debug proxy, debugger, and debug interface.
The location of the debug interface in the CPU debug environment is shown in Fig. 10.1 . The debug software
is connected to the debug proxy over network. The debug proxy is connected to the debugger through a
USB interface. The debugger communicates with the debug interface in JTAG mode.

Fig. 10.1: Location of the debug interface in CPU debug environment

10.2 Connection between the debug unit and CPU cores

C910MP adopts a multi-core single-port debug framework. It accesses the HAD unit of each core through
a shared JTAG interface, and triggers the core to enter or exit the debug mode and access CPU resources.
You can set the CORESEL field in the hacr register through the JTAG interface to specify a target core,
and then configure HAD registers of the target core.

In the multi-core debug framework, when a core enters the debug mode, another one or more cores
must also enter the debug mode; and when a core exits the debug mode, other one or more cores must also
exit the debug mode. Therefore, C910MP provides a unified event transmission module (ETM) to transmit
debug events, including debug entry and exit events, between multiple cores. When a core receives a debug
command from the ICE, it generates a debug entry or exit event and sends the event to the ETM. The ETM
forwards the event to other cores to enable multiple cores to synchronously enter or exit the debug mode.
The multi-core debug framework (with two cores) of C910 is shown in Fig. 10.2.

• Multiple cores enter the debug mode

When a core enters the debug mode, it generates a DBG_ENT signal. The EVENT_OUTEN
register of the core determines whether the DBG_ENT signal can be sent to the ETM. When
the EVENT_OUTEN register is enabled, the DBG_ENT signal is transmitted to other cores
through the ETM. Then the EVENT_INEN registers of other cores determine whether the cores

www.t-head.cn 104

Chapter 10. Debug

Fig. 10.2: Multi-core debug framework

can enter the debug mode.

• Multiple cores exit the debug mode

When a core exits the debug mode, it generates a DBG_EXIT signal. The EVENT_OUTEN
register of the core determines whether the DBG_EXIT signal can be sent to the ETM. When
the EVENT_OUTEN register is enabled, the DBG_EXIT signal is transmitted to other cores
through the ETM. Then the EVENT_INEN registers of the other cores determine whether the
cores can exit the debug mode.

10.3 Debug interface signals

External interface signals of the debug unit include JTAG interface signals and debug interface signals. Table
10.1 describes the debug interface signals.

Table 10.1: External interface signals of the debug unit

Signal name Direction
corex_pad_halted Output
pad_corex_dbgrq_b Input
corex_pad_jdb_pm[1:0] Output
pad_corex_dbg_mask Input
pad_had_jtg_tclk Input
pad_had_jtg_trst_b Input
pad_had_jtg_tdi Input
had_pad_jtg_tdo Output
had_pad_jtg_tdo_en Output
pad_had_jtg_tms Input

corex_pad_halted

www.t-head.cn 105

Chapter 10. Debug

A high level indicates that the corresponding core is in debug mode.

pad_corex_dbgrq_b

This signal is used to request multiple cores to synchronously enter the debug mode. It is valid
at a low level. This signal is an external input signal of the core. It is synchronized by the system
clock in the core and then transmitted to the HAD unit. The HAD unit uses this signal to request
multiple cores to synchronously enter the debug mode. Setting the signal to 0 is equivalent to
setting the DR bit in the hcr register of the HAD unit.

corex_pad_jdb_pm[1:0]

This signal indicates the current operating mode of the corresponding core. You can determine
whether the CPU has entered the debug mode based on this signal. For more information, see
Current_CPU_status_PM .

Table 10.2: Current CPU status indicated by PM :name: Cur-
rent_CPU_status_PM

had_pad_jdb_pm[1:0] Description
00 Common mode
01 Low power mode
10 Debug mode
11 Reserved

pad_corex_dbg_mask

A debug request masking signal driven by the SoC. It is used to mask debug requests for core x.
This signal must be set to a high level in a power-off process.

pad_had_jtg_tclk

A JTAG clock signal. This signal is an external input signal and is usually generated by the
debugger. To ensure proper functioning between the debug unit and cores, the frequency of this
signal must be lower than 1/2 that of the CPU clock signal.

pad_had_jtg_trst_b

A JTAG reset signal. It is used to reset the TAP state machine and other related control signals.

JTAG5 signals

• pad_had_jtg_tdi: A JTAG serial input signal of the HAD unit. The HAD unit performs sampling
on this signal at the rising edge of JTAG TCLK, and the debugger sets this signal at the falling edge
of JTAG TCLK.

• pad_had_jtg_tms: A JTAG mode selection signal. This signal is initiated by the debugger to control
operation of the TAP state machine in the HAD unit.

www.t-head.cn 106

Chapter 10. Debug

• had_pad_jtg_tdo: A JTAG serial output signal of the HAD unit. The HAD unit sets this signal at
the falling edge of JTAG TCLK, and the debugger performs sampling on this signal at the rising edge
of JTAG TCLK.

• had_pad_jtg_tdo_en: A signal indicating that the had_pad_jtg_tdo signal is valid. The debugger
usually monitors this signal to determine whether the had_pad_jtg_tdo signal is valid. Alternatively,
the debugger can read the state of the TAP state machine in the debugger to determine whether to
perform sampling on the had_pad_jtg_tdo signal. This signal is mainly used to determine the JTAG
pin that generates output when multiple TAP state machines are implemented.

www.t-head.cn 107

CHAPTER 11

Power Management

C910 supports various power management features, including the support for multiple power domains, power-
off of a single core, power-off of the cluster, and clearing of the L2 cache from external hardware interfaces.
This chapter describes the power management features of C910 in detail.

11.1 Power domain

C910 can be divided into a maximum of three power domains.

Each core is a power domain, including the computing unit, control logic, and cache RAM of the core.

The L2 subsystem (also called top level) is a power domain, including the CIU, L2 Cache, Debug, PLIC,
CLINT, and SYSIO submodules.

11.2 Overview of low-power modes

C910 supports the following low-power modes:

• Normal mode: The cores and L2 are running properly.

• Core WFI mode: Some cores are in the wait for interrupt (WFI) mode.

• Individual-core power-off: Some cores are powered off.

• Cluster power-off: The entire cluster, including the cores and L2, is powered off.

108

Chapter 11. Power Management

11.3 Core WFI process

By executing the WFI low power instruction, a core enters WFI mode and outputs signal
core(x)_pad_lpmd_b[1:0]=2’b00, which indicates that the core has entered WFI mode. The L2 sub-
system will disable the global ICG of this core inside the cluster.

The core will be woken up and exit WFI mode upon the occurrence of the following events:

• Reset

• Interrupt request: external interrupt, software interrupt, or timer interrupt requests sent by the PLIC
or CLINT submodules.

• Debug request

When one of the following events occurs, the core is temporarily woken up to process the event. It
reenters low power mode after the event is processed. The core does not exit WFI mode during the entire
process.

• Snoop request: Snoop requests sent by other cores.

11.4 Individual-core power-off process

The system can shut down the power of a core to completely terminate the static power of the core.

The process for powering off a core:

• Notifies SoC that the individual-core power-off process is to be executed. The implementation of this
step is subject to the SoC design.

• Masks all interrupt requests, including external interrupts, software interrupts, and timer interrupts,
and then disables the interrupt enable bit (MIE/SIE) of the mstatus/status register and the interrupt
enable bit of the mie/sie register. If the power-off process is executed in M-mode, the interrupt enable
bits of the mstatus and mie registers are disabled. If the power-off process is executed in S-mode, the
interrupt bits of the status and sie registers are disabled.

• Disables data prefetch

• Executes D-Cache INV&CLR ALL to write dirty lines back to the L2 cache.

• Disables D-Cache (no store instruction allowed between the clear cache and disable cache operations).

• Disables the SMPEN bit to mask snoop requests.

• Executes the fence iorw, iorw instruction.

• Executes the WFI instruction to enter WFI mode.

The system performs the following operations:

• Detects a valid low-power output signal core(x)_pad_lpmd_b sent from the core.

www.t-head.cn 109

Chapter 11. Power Management

• Sets pad_core(x)_dbg_mask to 1 to mask debug requests bound for the core to be powered off.

• Activates the output signal clamp bit of the core to be powered off.

• Sets the reset signal pad_core(x)_rst_b to 0 for the core to be powered off.

• Shuts down the power to the core.

A powered-off core can restart only by reset. The process of powering on a core again:

• The system detects a specific event and determines to wake up the core.

• The system sets the reset address of the core.

• The reset signal of the core is set to 0.

• The power is turned on and the reset signal remains unreleased.

• The output signal clamp bit of the core is released.

• The reset signal of the core is released.

• The core executes the initialization program, enables the SMPEN bit, or performs initialization oper-
ations, such as enabling the MMU or D-Cache.

11.5 Cluster power-off process (hardware clearing of the L2 cache)

Ensure that the power is shut down for all cores except the main core in the cluster. The main core is the
last core to be powered off. It can be either of the two cores.

The main core performs the following operations:

• Notifies SoC that the cluster power-off process is to be executed. The implementation is subject to the
SoC design.

• Masks all interrupt requests, including external interrupts, software interrupts, and timer interrupts,
and then disables the interrupt enable bit (MIE/SIE) of the mstatus/status register and the interrupt
enable bit of the mie/sie register.

• Disables data prefetch

• Executes the D-Cache INV&CLR ALL operation.

• Disables D-Cache (no store instruction allowed between the clear cache and disable cache operations).

• Disables the SMPEN bit.

• Executes the fence iorw, iorw instruction.

• Executes the WFI instruction to enter WFI mode.

The system performs the following operations:

• Detects a valid low-power output signal core(x)_pad_lpmd_b sent from the main core.

www.t-head.cn 110

Chapter 11. Power Management

• Sets pad_core(x)_dbg_mask to 1 to mask debug requests bound for the main core.

• Activates the output signal clamp bit of the main core.

• Sets the reset signal pad_core(x)_rst_b to 0 for the main core.

• Shuts down the power of the main core.

• Sets pad_cpu_l2cache_flush_req to 1 to start clearing the L2 cache.

• Waits for C910 to return cpu_pad_l2cache_flush_done=1.

• Sets pad_cpu_l2cache_flush_req to 0. (Then C910 will set cpu_pad_l2cache_flush_done to 0.)

• Waits for C910 to return cpu_pad_no_op=1.

• Activates the output signal clamp bit of the L2 subsystem.

• Sets the reset signal pad_cpu_rst_b of the L2 cache to 0.

• Shuts down the power of the L2 subsystem.

The cluster is powered on again by reset. The process of powering on the cluster again:

• The reset signal is set to 0 for all cores and the L2 subsystem in the cluster.

• The power is turned on, the reset signal remains unreleased, and the PLL is stable.

• The output signal clamp bits of the cores and the L2 subsystem are released.

• The reset signals of the cores and the L2 subsystem are released.

• The reset exception service program is executed to recover the CPU.

11.6 Cluster power-off process (software clearing of the L2 cache)

Ensure that the power is shut down for all cores except the main core in the cluster. In this scenario, it is
recommended that SoC distinguishes the main core and secondary core. Core 0 can function as the main
core.

The main core performs the following operations:

• Notifies SoC that the cluster power-off process is to be executed. The implementation is subject to the
SoC design.

• Masks all interrupt requests, including external interrupts, software interrupts, and timer interrupts,
and then disables the interrupt enable bit (MIE/SIE) of the mstatus/status register and the interrupt
enable bit of the mie/sie register.

• Disables data prefetch

• Executes the D-Cache INV&CLR ALL operation.

• Disables D-Cache (no store instruction allowed between the clear cache and disable cache operations).

www.t-head.cn 111

Chapter 11. Power Management

• Disables the SMPEN bit.

• Executes the fence iorw, iorw instruction.

• Executes the CLR & INV L2 Cache operation.

• Executes the fence iorw, iorw instruction.

• Executes the WFI instruction to enter WFI mode.

The system performs the following operations:

• Detects a valid low-power output signal core(x)_pad_lpmd_b sent from the main core.

• Sets pad_core(x)_dbg_mask to 1 to mask debug requests bound for the main core.

• Activates the output signal clamp bit of the main core.

• Sets the reset signal pad_core(x)_rst_b to 0 for the main core.

• Shuts down the power of the main core.

• Waits for C910 to return cpu_pad_no_op=1.

• Activates the output signal clamp bit of the L2 subsystem.

• Sets the reset signal pad_cpu_rst_b of the L2 cache to 0.

• Shuts down the power of the L2 subsystem.

11.7 Simplified scenario: overall cluster power-off process (hardware
clearing of the L2 cache)

In some systems, SoC designers may take a simple way to divide power domains. That is, take the entire
C910 cluster (two cores and one L2 subsystem) as a power domain and power off the cluster as a whole,
instead of powering off each core separately. The cluster can be powered off (hardware clearing of the L2
cache) through the following steps:

The system performs the following operations:

• Notifies SoC that the overall cluster power-off process is to be executed. The implementation is subject
to the SoC design.

The core (no need to distinguish the main core and secondary core, as the process is the same for them)
performs the following operations:

• Masks all interrupt requests including external interrupts, software interrupts, and timer interrupts,
and disables the interrupt enable bit (MIE/SIE) of the mstatus/sstatus register, as well as the interrupt
enable bit of the mie/sie register.

• Disables data prefetch

• Executes INV&CLR D-Cache ALL to write dirty lines back to the L2 cache.

www.t-head.cn 112

Chapter 11. Power Management

• Disables D-Cache (no store instruction allowed between the clear cache and disable cache operations).

• Disables the SMPEN bit to mask snoop requests.

• Executes the fence iorw, iorw instruction.

• Executes the WFI instruction.

The system performs the following operations:

• Waits for core(x)_pad_lpmd_b[1:0]==2’b00, which means all CPU cores enter the low power state.

• Sets pad_core(x)_dbg_mask to 1 for all cores to mask debug requests.

• Sets pad_cpu_l2cache_flush_req to 1 to start hardware clearing for the L2 cache.

• Waits for C910 to return cpu_pad_l2cache_flush_done=1, which means the L2 cache is cleared.

• Sets pad_cpu_l2cache_flush_req to 0. (Then, C910 will set cpu_pad_l2cache_flush_done to 0.)

• Waits for cpu_pad_no_op==1’b1, which means the L2 cache enters the idle state. (All CPU cores
are still in the low power state.)

• Activates the output signal clamp of the cluster.

• Asserts all reset signals.

• Powers off the entire cluster.

11.8 Simplified scenario: overall cluster power-off process (software
clearing of the L2 cache)

The simple power domain division also applies. That is, the entire C910 cluster (two cores and the L2
subsystem) is taken as a power domain and is powered off as a whole. The cluster can be powered off
(software clearing of the L2 cache) through the following steps:

The system performs the following operations:

• Notifies SoC that the overall cluster power-off process is to be executed. The implementation is subject
to the SoC design.

The secondary core (for example, CPU1) performs the following operations:

• Masks all interrupt requests including external interrupts, software interrupts, and timer interrupts,
and disables the interrupt enable bit (MIE/SIE) of the mstatus/sstatus register, as well as the interrupt
enable bit of the mie/sie register.

• Disables data prefetch

• Executes INV&CLR D-Cache ALL to write dirty lines back to the L2 cache.

• Disables D-Cache (no store instruction allowed between the clear cache and disable cache operations).

www.t-head.cn 113

Chapter 11. Power Management

• Disables the SMPEN bit to mask snoop requests.

• Executes the fence iorw, iorw instruction.

• Executes the WFI instruction.

The main core (for example, CPU0) performs the following operations:

• Masks all interrupt requests including external interrupts, software interrupts, and timer interrupts,
and disables the interrupt enable bit (MIE/SIE) of the mstatus/sstatus register, as well as the interrupt
enable bit of the mie/sie register.

• Disables data prefetch

• Executes INV&CLR D-Cache ALL to write dirty lines back to the L2 cache.

• Disables D-Cache (no store instruction allowed between the clear cache and disable cache operations).

• Disables the SMPEN bit to mask snoop requests.

• Executes the fence iorw, iorw instruction.

• Waits for all secondary cores to enter WFI mode. (The implementation is subject to the SoC design.)

• Executes INV&CLR L2 Cache ALL to clear the L2 cache.

• Executes the fence iorw, iorw instruction.

• Executes the WFI instruction.

The system performs the following operations:

• Waits for core(x)_pad_lpmd_b[1:0]==2’b00 and cpu_pad_no_op==1’b1, which means all CPU
cores enter the low power state and the L2 cache enters the idle state.

• Sets pad_core(x)_dbg_mask to 1 for all cores to mask debug requests.

• Activates the output signal clamp of the cluster.

• Asserts all reset signals.

• Powers off the entire cluster.

11.9 Low power consumption related programming models and interface
signals

11.9.1 Programming models

M-mode snoop enable register (MSMPR)

This register is 64 bits wide. Only bit [0] has a definition (=SMPEN) and its default value is 0. This
register controls whether cores can accept snoop requests.

www.t-head.cn 114

Chapter 11. Power Management

• When MSMPR.SMPEN is 0, the cores cannot process snoop requests, and the L2 subsystem masks
snoop requests bound for the cores.

• When MSMPR.SMPEN is 1, the cores can process snoop requests, and the L2 subsystem sends snoop
requests to the cores.

The corresponding SMPEN bit must be set to 0 before a core is powered off. After the core is powered
on, SMPEN must be set to 1 before the software enables the D-Cache and MMU. When a core is in normal
running mode, its SMPEN bit must be set to 1.

M-mode reset vector base address register (mrvbr)

Each core has an mrvbr register for determining the restart address of the core. The access permission
for mrvbr registers is MRO. The initial value of the mrvbr register of a core is determined by the hardware
signal pad_core(x)_rvba[39:0]. Note: pad_core(x)_rvba[0] is always 0.

11.9.2 Interface signals

Reset signal control

C910 top level has three reset signals: pad_core0_rst_b, pad_core1_rst_b, and pad_cpu_rst_b. SoC
can use the preceding signals to control the reset of Core 0, Core 1, and L2.

C910 communicates with the power management unit of SoC by using the following signals:

• core(x)_pad_lpmd_b: Indicates whether a core is in WFI mode. 2’b11 indicates normal mode, and
2’b00 indicates WFI mode.

• cpu_pad_no_op: Indicates whether the L2 cache is idle. This signal is valid (a high level) when all
cores enter low power mode and the L2 cache finishes all transmissions.

• pad_cpu_l2cache_flush_req and cpu_pad_l2cache_flush_done: Clear the L2 cache under the control
of SoC. These signals are used in the cluster power-off process. The req signal is driven by SoC, and
the done signal is driven by C910. First, SoC sets the req signal to 1 to start the L2 cache clearing
process > C910 finishes clearing the L2 cache and returns done=1 > SoC sets the req signal to 0 >
C910 sets the done signal to 0.

www.t-head.cn 115

CHAPTER 12

Performance Monitoring Unit

12.1 PMU overview

The performance monitoring unit (PMU) of C910 complies with the RISC-V standard and collects software
and hardware information during a program operation for software developers to optimize their programs.

The software and hardware information collected by the PMU includes the following:

• Number of running clocks and the time

• Instruction statistics

• Statistics of key components of the CPU

12.2 PMU programming model

12.2.1 PMU functions

Basic functions of the PMU are:

• Prohibits the counting of all events by using the mcountinhibit register.

• Resets the PMU counters, including mcycle, minstret, and mhpmcounter3 to mhpmcounter31.

• Configures the corresponding events for each PMU counter. In C910, the mappings between events
and counters are fixed. Therefore, events must be configured for the PMU counters based on a fixed
pattern. For example, 0x1 must be written to mhpmevent3, which means that mhpmcounter3 counts

116

Chapter 12. Performance Monitoring Unit

the number of 0x1 events (L1 ICache access count), and 0x2 must be written to mhpmevent4, which
means that mhpmevent4 counts the number of 0x2 events (L1 ICache miss count), and so forth.

• Grants access permissions. The mcounteren register determines whether PMU counters can be accessed
in S-mode, and scounteren determines whether PMU counters can be accessed in U-mode.

• Discharges the prohibition by using the mcountinhibit register and starts counting.

For more information, see PMU setting example.

12.2.2 PMU event overflow interrupt

C910 implements the M-mode event overflow mark register (mcounteren) and M-mode event interrupt en-
able register (mcounteren). For more information about register functions and read/write permissions, see
appendix C-1 M-mode control register. In the mcounteren register, the bits and event counters are in one-
to-one correspondence, indicating whether the event counters overflow. In the mcounteren register, the bits
and event counters are in one-to-one correspondence, indicating whether to initiate an interrupt request
when an event counter overflows.

The unified interrupt vector number of overflow interrupts initiated by the PMU is 17. The interrupt
enabling and processing process is the same as that of common interrupts. For more information, see
Exceptions and Interrupts.

12.3 PMU related control registers

12.3.1 M-mode counter access enable register (mcounteren)

The mcounteren register determines whether U-mode counters can be accessed in S-mode.

M-mode counter access enable register (mcounteren)

www.t-head.cn 117

Chapter 12. Performance Monitoring Unit

Table 12.1: Description of the M-mode counter access enable reg-
ister

Bit Read/Write Name Description
31:3 Read/Write HPMn The access bit of the hpmcountern register in S-mode.

0: An illegal instruction exception will occur for accesses to the
hpmcounternregister in S-mode.
1: The hpmcountern register can be normally accessed in S-mode.

2 Read/Write IR The access bit of the minstret register in S-mode.
0: An instruction exception will occur for accesses to the minstret
register in S-mode.
1: The minstret register can be normally accessed in S-mode.

1 Read/Write TM The access bit of the time register in S-mode.
0: An illegal instruction exception will occur for accesses to the
time register in S-mode.
1: When the corresponding bit of the mcounteren register is 1, the
time register can be normally accessed in S-mode. Otherwise, an
illegal instruction exception will occur.

0 Read/Write CY The ccess bit of the mcycle register in S-mode.
0: An illegal instruction exception will occur for accesses to the
cycle register in S-mode.
1: The cycle register can be normally accessed in S-mode.

12.3.2 S-mode counter access enable register (scounteren)

The scounteren register determines whether U-mode counters can be accessed in U-mode.

S-mode counter access enable register (scounteren)

www.t-head.cn 118

Chapter 12. Performance Monitoring Unit

Table 12.2: Description of the scounteren register

Bit Read/Write Name Description
31:3 Read/Write HPMn The access bit of the hpmcountern register in U-mode.

0: An illegal instruction exception will occur for accesses to the
hpmcountern register in U-mode.
1: When the corresponding bit of the mcounteren register is 1, the
hpmcounter register can be normally accessed in U-mode. Other-
wise, an illegal instruction exception will occur.

2 Read/Write IR The access bit of the instret register in U-mode.
0: An illegal instruction exception will occur for accesses to the
instret register in U-mode.
1: When the corresponding bit of the mcounteren register is 1, the
instret register can be normally accessed in U-mode. Otherwise,
an illegal instruction exception will occur.

1 Read/Write TM The access bit of the time register in U-mode.
0: An illegal instruction exception will occur for accesses to the
time register in U-mode.
1: When the corresponding bit of the mcounteren register is 1, the
time register can be normally accessed in U-mode. Otherwise, an
illegal instruction exception will occur.

0 Read/Write CY The access bit of the cycle register in U-mode.
0: An illegal instruction exception will occur for accesses to the
cycle register in U-mode.
1: When the corresponding bit of the mcounteren register is 1, the
cycle register can be normally accessed in U-mode. Otherwise, an
illegal instruction exception will occur.

12.3.3 M-mode count inhibit register (mcountinhibit)

The mcountinhibit register inhibits counting of M-mode counters. When performance analysis is not required,
counters can be disabled to reduce the power consumption of the CPU.

M-mode count inhibit register (mcountinhibit)

www.t-head.cn 119

Chapter 12. Performance Monitoring Unit

Table 12.3: Description of the M-mode count inhibit register

Bit Read/Write Name Description
31:3 Read/Write MHPMn n Count inhibit bit of the mhpmcounter register

0: normal counting
1: counting inhibited

2 Read/Write MIR Count inhibit bit of the minstret register
0: normal counting
1: counting inhibited

1 - - -
0 Read/Write MCY Count inhibit bit of the mcycle register

0: normal counting
1: counting inhibited

12.3.4 S-mode write enable register (mcounterwen)

The mcounterwen register determines whether S-mode event counters can be written in S-mode. This register
is an M-mode extension register. For the register description, see Appendix C-1 M-mode control registers.

12.3.5 Performance monitoring event select register (mhpmevent3-31)

The mhpmevent3-31 register selects the counting event corresponding to a counter. In C910, a counter
corresponds to an event, which cannot be modified. Therefore, only the corresponding event ID can be
written to each event selector. An event counter performs counting normally only after the index value of
the corresponding event is written to the event selector, and the event counter is initialized by using the
csrw instruction.

M-mode performance monitoring event select register (mhpmevent)

Table 12.4 describes the M-mode performance monitoring event select register.

www.t-head.cn 120

Chapter 12. Performance Monitoring Unit

Table 12.4: Description of the M-mode performance monitoring
event select register

Bit Read/Write Name Description
63:0 Read/Write Event in-

dex
Performance monitoring event index
0: no event
0x1 to 0x1A: performance monitoring events implemented by hard-
ware. For more information, see: numref:Counter_event_list.
>0x1A: performance monitoring events that are not defined by
hardware. These events are customized for use by the software.

Table 12.5 describes the correspondence between event selectors, events, and counters.

www.t-head.cn 121

Chapter 12. Performance Monitoring Unit

Table 12.5: List of correspondence between counters and events

Event selector Index Event Counter
mhpmevent3 0x1 L1 ICache Access Counter mhpmcounter3
mhpmevent4 0x2 L1 ICache Miss Counter mhpmcounter4
mhpmevent5 0x3 I-UTLB Miss Counter mhpmcounter5
mhpmevent6 0x4 D-UTLB Miss Counter mhpmcounter6
mhpmevent7 0x5 JTLB Miss Counter mhpmcounter7
mhpmevent8 0x6 Conditional Branch Mispredict Counter mhpmcounter8
mhpmevent9 0x7 Reserved mhpmcounter9
mhpmevent10 0x8 Indirect Branch Mispredict Counter mhpmcounter10
mhpmevent11 0x9 Indirect Branch Instruction Counter mhpmcounter11
mhpmevent12 0xA LSU Spec Fail Counter mhpmcounter12
mhpmevent13 0xB Store Instruction Counter mhpmcounter13
mhpmevent14 0xC L1 DCache Read Access Counter mhpmcounter14
mhpmevent15 0xD L1 DCache Read Miss Counter mhpmcounter15
mhpmevent16 0xE L1 DCache Write Access Counter mhpmcounter16
mhpmevent17 0xF L1 DCache Write Miss Counter mhpmcounter17
mhpmevent18 0x10 L2 Cache Read Access Counter mhpmcounter18
mhpmevent19 0x11 L2 Cache Read Miss Counter mhpmcounter19
mhpmevent20 0x12 L2 Cache Write Access Counter mhpmcounter20
mhpmevent21 0x13 L2 Cache Write Miss Counter mhpmcounter21
mhpmevent22 0x14 RF Launch Fail Counter mhpmcounter22
mhpmevent23 0x15 RF Reg Launch Fail Counter mhpmcounter23
mhpmevent24 0x16 RF Instruction Counter mhpmcounter24
mhpmevent25 0x17 LSU Cross 4K Stall Counter mhpmcounter25
mhpmevent26 0x18 LSU Other Stall Counter mhpmcounter26
mhpmevent27 0x19 LSU SQ Discard Counter mhpmcounter27
mhpmevent28 0x1A LSU SQ Data Discard Counter mhpmcounter28
mhpmevent29�31 >=

0x1B
Not Defined mhpmcounter29~31

12.3.6 Event counters

Event counters are divided into three groups: M-mode event counters, U-mode event counters, and S-mode
event counters (extended in C910). For more information, see: numref:mac_counter_list.

www.t-head.cn 122

Chapter 12. Performance Monitoring Unit

Table 12.6: M-mode event counter list

Name Index Read/Write Initial value Description
MCYCLE 0xB00 MRW 0x0 The cycle counter.
MINSTRET 0xB02 MRW 0x0 The instructions-retired counter.
MHPMCOUNTER3 0xB03 MRW 0x0 A performance-monitoring counter.
MHPMCOUNTER4 0xB04 MRW 0x0 A performance-monitoring counter.
⋯ ⋯ ⋯ ⋯ ⋯

MHPMCOUNTER31 0xB1F MRW 0x0 A performance-monitoring counter.

Table 12.7 lists the U-mode event counters.

Table 12.7: U-mode event counter list

Name Index Read/Write Initial value Description
CYCLE 0xC00 URO 0x0 The cycle counter.
TIME 0xC01 URO 0x0 The timer.
INSTRET 0xC02 URO 0x0 The instructions-retired counter.
HPMCOUNTER3 0xC03 URO 0x0 A performance-monitoring counter.
HPMCOUNTER4 0xC04 URO 0x0 A performance-monitoring counter.
⋯ ⋯ ⋯ ⋯ ⋯

HPMCOUNTER31 0xC1F URO 0x0 A performance-monitoring counter.

Table 12.8: S-mode event counter list

Name Index Read/Write Initial value Description
SCYCLE 0x5E0 SRO 0x0 The cycle counter.
SINSTRET 0x5E2 SRO 0x0 The instructions-retired counter.
SHPMCOUNTER3 0x5E3 SRO 0x0 A performance-monitoring counter.
SHPMCOUNTER4 0x5E4 SRO 0x0 A performance-monitoring counter.
⋯ ⋯ ⋯ ⋯ ⋯

SHPMCOUNTER31 0x5FF SRO 0x0 A performance-monitoring counter.

The U-mode CYCLE, INSTRET, and HPMCOUNTERn counters are read-only mappings of the cor-
responding M-mode event counters. The timer is the read-only mapping of the MTIME register. The
S-mode SCYCLE, SINSTRET, and SHPMCOUNTERn counters are mappings of corresponding M-mode
event counters.

www.t-head.cn 123

CHAPTER 13

Program Examples

This chapter describes various program examples, including the MMU setting example, PMP setting ex-
ample, cache setting example, multi-core startup example, synchronization primitive example, PLIC setting
example, and PMU setting example.

13.1 Optimal CPU performance configuration

The optimal performance of C910 can be achieved by using the following configurations:

• MHCR = 0x11ff

• MHINT = 0x6e30c

• MCCR2 = 0xe0000009 (Note: MCCR2 contains RAM delay settings. In this example, all delays are
0. Customers need to set a proper RAM delay based on the actual situation.)

• MXSTATUS = 0x638000

• MSMPR = 0x1

mhcr
li x3, 0x11ff
csrs mhcr,x3

#mhint
li x3, 0x6e30c

(continues on next page)

124

Chapter 13. Program Examples

(continued from previous page)

csrs mhint,x3

mxstatus
li x3, 0x638000
csrs mxstatus,x3

msmpr
csrsi msmpr,0x1

mccr2
li x3, 0xe0000009
csrs mccr2,x3

13.2 MMU setting example

/**

* Function: An example of setting C910MP MMU.
* Memory space: Virtual address <-> physical address.
*
* Pagesize 4K：vpn: {vpn2,vpn1,vpn0} <-> ppn: {ppn2,ppn1,ppn0}
* Pagesize 2M：vpn: {vpn2,vpn1} <-> ppn:{ppn2,ppn1}
* Pagesize 1G：vpn: {vnp2} <-> ppn: {ppn2}
*
**/

/*C910 will invalidate all MMU TLB entries automatically when reset*/
/*You can use sfence.vma to invalid all MMU TLB entries if necessary*/
sfence.vma x0, x0

/* Pagesize 4K：vpn: {vpn2, vpn1, vpn0} <-> ppn: {ppn2, ppn1, ppn0}*/
/* First-level page addr base：PPN (defined in satp)*/
/* Second-level page addr base：BASE2 (self define)*/
/* Third-level page addr base：BASE3 (self define)*/
/* 1. Get first-level page addr base: PPN and vpn*/
/* Get PPN*/
csrr x3, satp
li x4, 0xfffffffffff

(continues on next page)

www.t-head.cn 125

Chapter 13. Program Examples

(continued from previous page)

and x3, x3, x4

/*2. Config first-level page*/
/*First-level page addr: {PPN, vpn2, 3’b0}, first-level page pte:{ 44’b BASE2, 10’b1}

↪→ */
/*Get first-level page addr*/
slli x3, x3, 12
/*Get vpn2*/
li x4, VPN
li x5, 0x7fc0000
and x4, x4, x5
srli x4, x4, 15
and x5, x3, x4
/*Store pte at first-level page addr*/
li x6, {44’b BASE2, 10’b1}
sd x6, 0(x5)

/*3. Config second-level page*/
/*Second-level page addr: {BASE2, vpn1, 3’b0}, second-level page pte:{ 44’b BASE3, 10’

b1} */
/*Get second-level page addr*/
/* VPN1*/
li x4, VPN
li x5, 0x3fe00
and x4, x4, x5
srli x4, x4, 9
/*BASE2*/
li x5, BASE2
srli x5, x5, 12
and x5, x5, x4
/*Store pte at second-level page addr*
li x6, {44’b BASE3, 10’b1}
sd x6, 0(x5)
/*4. Config third-level page*/
/*Third-level page addr: {BASE3, vpn0, 3’b0}, third-level page pte:{
theadflag, ppn2, ppn1, ppn0, 9’b flags,1’b1} */
/*Get second-level page addr*/
/* VPN0*/
li x4, VPN
li x5, 0x1ff

(continues on next page)

www.t-head.cn 126

Chapter 13. Program Examples

(continued from previous page)

and x4, x4, x5
srli x4, x4, 3
/*BASE3*/
li x5, BASE3
srli x5, x5, 12
and x5, x5, x4
/*Store pte at second-level page addr*/
li x6, { theadflag, ppn2, ppn1, ppn0, 9’b flags, 1’b1}
sd x6, 0(x5)

/* Pagesize 2M：vpn: {vpn2, vpn1} <-> ppn: {ppn2, ppn1}*/
/*First-level page addr base：PPN (defined in satp)*/
/*Second-level page addr base：BASE2 (self define)*/

/*1. Get first-level page addr base: PPN and vpn*/
/* Get PPN*/
csrr x3, satp
li x4, 0xfffffffffff
and x3, x3, x4

/*2. Config first-level page*/
/*First-level page addr: {PPN, vpn2, 3’b0}, first-level page pte:{ 44’b
BASE2, 10’b1}*/
/*Get first-level page addr*/
slli x3, x3, 12
/*Get vpn2*/
li x4, VPN
li x5, 0x7fc0000
and x4, x4, x5
srli x4, x4, 15
and x5, x3, x4
/*Store pte at first-level page addr*/
li x6, {44’b BASE2, 10’b1}
sd x6, 0(x5)

/*3. Config second-level page*/
/*Second-level page addr: {BASE2, vpn1, 3’b0}, second-level page pte:{
theadflag, ppn2, ppn1, 9’b0, 9’b flags,1’b1} */
/*Get second-level page addr*/

(continues on next page)

www.t-head.cn 127

Chapter 13. Program Examples

(continued from previous page)

/*VPN1*/
li x4, VPN
li x5, 0x3fe00
and x4, x4, x5
srli x4, x4, 9
/*BASE2*/
li x5, BASE2
srli x5, x5, 12
and x5, x5, x4
/*Store pte at second-level page addr*/
li x6, { theadflag, ppn2, ppn1, 9’b0, 9’b flags,1’b1}
sd x6, 0(x5)

/* Pagesize 1G：vpn: {vpn2} <-> ppn: {ppn2}*/
/*First-level page addr base：PPN (defined in satp)*/
/*1. Get first-level page addr base: PPN and vpn*/
/* Get PPN*/
csrr x3, satp
li x4, 0xfffffffffff
and x3, x3, x4

/*2. Config first-level page*/
/*First-level page addr: {PPN, vpn2, 3’b0}, first-level page pte:{
theadflag, ppn2, 9’b0, 9’b0, 9’b flags,1’b1}*/
/*Get first-level page addr*/
slli x3, x3, 12
/*Get vpn2*/
li x4, VPN
li x5, 0x7fc0000
and x4, x4, x5
srli x4, x4, 15
and x5, x3, x4
/*Store pte at first-level page addr*/
li x6, { theadflag, ppn2, 9’b0, 9’b0, 9’b flags,1’b1}
sd x6, 0(x5)

www.t-head.cn 128

Chapter 13. Program Examples

13.3 PMP setting example

/**
* Function: An example of setting C910MP PMP.
* 0x0 ~ 0xf0000000, TOR mode, RWX
* 0xf0000000 ~ 0xf8000000, NAPOT mode, RW
* 0xfff73000 ~ 0xfff74000, NAPOT mode, RW
* 0xfffc0000 ~ 0xfffc2000, NAPOT mode, RW
*Different execution permissions are configured for the preceding four regions. PMP must␣
↪→be configured to prevent the CPU from executing instructions to unsupported address␣
↪→regions in different modes, especially in M-mode where the CPU has full execution␣
↪→permissions by default. Specifically, after you configure address regions that require␣
↪→execution permissions, no permission should be configured for the rest address regions.
↪→ For more information, see the following example.
**/

pmpaddr0,0x0�0xf0000000, TOR mode, read and write permissions
li x3, (0xf0000000 >> 2)
csrw pmpaddr0, x3
pmpaddr1,0xf0000000�0xf8000000, NAPOT mode, read and write permissions
li x3, (0xf0000000 >> 2 | (0x8000000-1) >> 3))
csrw pmpaddr1, x3
pmpaddr2,0xfff73000�0xfff74000, NAPOT mode, read and write permissions
li x3, (0xfff73000 >> 2 | (0x1000-1) >> 3))
csrw pmpaddr2, x3
pmpaddr3,0xfffc0000�0xfffc2000, NAPOT mode, read and write permissions
li x3, (0xfffc0000 >> 2 | (0x2000-1) >> 3))
csrw pmpaddr3, x3
pmpaddr4,0xf0000000�0x100000000, NAPOT mode, no permissions
li x3, (0xf0000000 >> 2 | (0x10000000-1) >> 3))
csrw pmpaddr4, x3
pmpaddr5,0x100000000�0xffffffffff, TOR mode, no permissions
li x3, (0xffffffffff >> 2)
csrw pmpaddr5, x3
PMPCFG0 configures the execution permission, mode, and lock bit of entries.
When lock is 1, it is valid only in M-mode.
li x3,0x88989b9b9b8f
csrw pmpcfg0, x3
pmpaddr5,0x100000000�0xffffffffff: In TOR mode, when 0x100000000 <= addr <
0xffffffffff, pmpaddr5 will be hit. However, pmpaddr5 cannot be hit in the address␣

↪→range 0xfffffff000 ~ (continues on next page)

www.t-head.cn 129

Chapter 13. Program Examples

(continued from previous page)

0xffffffffff (the minimum PMP granularity is 4 KB in C910). An NAPOT entry must be␣
↪→configured to mask the last 4 KB space of a 1 TB space.

13.4 Cache examples

13.4.1 Cache enabling example

/*C910 will invalidate all I-cache automatically when reset*/
/*You can invalidate I-cache by yourself if necessary*/
/*Invalidate I-cache*/
li x3, 0x33
csrc mcor, x3
li x3, 0x11
csrs mcor, x3
// You can also use icache instrucitons to replace the invalidate sequence
// if theadisaee is enabled.
//icache.iall
//sync.is

/*Enable I-cache*/
li x3, 0x1
csrs mhcr, x3

/*C910 will invalidate all D-cache automatically when reset*/
/*You can invalidate D-cache by yourself if necessary*/
/*Invalidate D-cache*/
li x3, 0x33
csrc mcor, x3
li x3, 0x12
csrs mcor, x3

// You can also use dcache instrucitons to replace the invalidate sequence
// if theadisaee is enabled.
// dcache.iall
// sync.is

/*Enable D-cache*/
li x3, 0x2

(continues on next page)

www.t-head.cn 130

Chapter 13. Program Examples

(continued from previous page)

csrs mhcr, x3

/*C910 will invalidate all L2 cache automatically when reset*/
/*You can invalidate L2 by yourself if necessary*/
/*Invalidate L2-cache if theadisaee is enabled*/
l2cache.iall
sync.is

/*Enable L2-cache*/
li x3, 8
csrs mccr2, x3

13.4.2 Example of synchronization between the instruction and data caches

CPU0

sd x3,0(x4) // a new instruction defined in x3
// is stored to program memory address defined in x4.

dcache.cval1 r0 // clean the new instrcution to the shared L2 cache.
sync.s // ensure completion of clean operation.

// the dcache clean is not necessarily if INSDE is not enabled.
icache.iva r0 // invalid icache according to shareable configuraiton.
sync.s/fence.i // ensure completion in all CPUs.
sd x5,0(x6) // set flag to signal operation completion.
sync.is
jr x4 // jmp to new code

CPU1�CPU3

WAIT_FINISH:
ld x7,0(x6)
bne x7,x5, WAIT_FINISH // wait CPU0 modification finish.
sync.is
jr x4 // jmp to new code

13.4.3 Example of synchronization between the TLB and the data cache

CPU0

www.t-head.cn 131

Chapter 13. Program Examples

sd x4,0(x3) // update a new translation table entry
sync.is/fence.i // ensure completion of update operation.
sfence.vma x5,x0 // invalid the TLB by va
sync.is/fence.i // ensure completion of TLB invalidation and

// synchronises context

13.5 Synchronization primitive examples

CPU0

li x1, 0x1
li x6, 0x0

ACQUIRE_LOCK: // (x3) is the lock address. 0: Free; 1: Busy.
lr x4, 0(x3) // Read lock
bnez x4, ACQUIRE_LOCK // Try again if the lock is in use
sc x5, x1, 0(x3) // Attempt to store new value
bne x6, x5, ACQUIRE_LOCK // Try again if fail
sync.s

... // Critical section code

CPU1

sync.s/fence.i // Ensure all operations are observed before clearing the lock.
sd x0, 0(x3) // Clear the lock.

13.6 PLIC setting example

//Init id 1 machine mode int for hart 0
/*1. Set hart threshold if needed*/
li x3, (plic_base_addr + 0x200000) // h0 mthreshold addr
li x4, 0xa //threshold value
sw x4,0x0(x3) // set hart0 threshold as 0xa

/*2. Set priority for int id 1*/
li x3, (plic_base_addr + 0x0) // int id 1 prio addr
li x4, 0x1f // prio value

(continues on next page)

www.t-head.cn 132

Chapter 13. Program Examples

(continued from previous page)

sw x4,0x4(x3) // init id1 priority as 0x1f

/*3. Enable m-mode int id1 to hart*/
li x3, (plic_base_addr + 0x2000) // h0 mie0 addr
li x4, 0x2
sw x4,0x0(x3) // enable int id1 to hart0

/*4. Set ip or wait external int*/
/*following code set ip*/
li x3, (plic_base_addr + 0x1000) // h0 mthreshold addr
li x4, 0x2 // id 1 pending
sw x4, 0x0(x3) // set int id1 pending

/*5. Core enters interrupt handler, read PLIC_CLAIM and get ID*/

/*6. Core takes interrupt*/

/*7. Core needs to clear external interrupt source if LEVEL(not PULSE)
configured, then core writes ID to PLIC_CLAIM and exits interrupt*/

13.7 PMU setting example

/*1. Inhibit counters counting*/
li x3, 0xffffffff
csrw mcountinhibit, x3

/*2. C910 will initial all pmu counters when reset*/
/*you can initial pmu counters manually if necessarily*/
csrw mcycle, x0
csrw minstret, x0
csrw mhpmcounter3, x0
⋯⋯
csrw mhpmcounter31, x0

/*3. Configure mhpmevent*/
li x3, 0x1
csrw mhpmevent3, x3 // mhpmcounter3 count event: L1 ICache Access Counter
li x3, 0x2

(continues on next page)

www.t-head.cn 133

Chapter 13. Program Examples

(continued from previous page)

csrw mhpmevent4, x3 // mhpmcounter4 count event: L1 ICache Miss Counter
⋯⋯
li x3, 0x13
csrw mhpmevent21, x3 // mhpmcounter21 count event: L2 Cache write miss Counter

/*4. Configure mcounteren and scounteren*/
li x3, 0xffffffff
csrw mcounteren, x3 // enable super mode to read hpmcounter
li x3, 0xffffffff
csrw scounteren, x3 // enable user mode to read hpmcounter

/*5. Enable counters to count when you want*/
csrw mcountinhibit, x0

www.t-head.cn 134

CHAPTER 14

Appendix A Standard Instructions

C910MP implements the RV64IMAFDC instruction set architecture. The instructions are described in the
following sections by instruction set.

14.1 Appendix A-1 I instructions

The following describes the RISC-V I instructions implemented by C910. The instructions are sorted in
alphabetic order.

The instructions are 32 bits wide by default. However, in specific cases, the system assembles some
instructions into 16-bit compressed instructions. For more information about compressed instructions, see
Appendix A-6 C Instructions.

14.1.1 ADD: a signed add instruction

Syntax:

add rd, rs1, rs2

Operation:

rd ← rs1 + rs2

Permission:

Machine mode (M-mode)/Supervisor mode (S-mode)/User mode (U-mode)

135

Chapter 14. Appendix A Standard Instructions

Exception:

None

Instruction format:

14.1.2 ADDI: a signed add immediate instruction

Syntax:

addi rd, rs1, imm12

Operation:

rd ← rs1 + sign_extend(imm12)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.3 ADDIW: a signed add immediate instruction that operates on the lower 32 bits

Syntax:

addiw rd, rs1, imm12

Operation:

tmp[31:0] ← rs1[31:0] + sign_extend(imm12)[31:0]

rd ← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

www.t-head.cn 136

Chapter 14. Appendix A Standard Instructions

14.1.4 ADDW: a signed add instruction that operates on the lower 32 bits

Syntax:

addw rd, rs1, rs2

Operation:

tmp[31:0] ← rs1[31:0] + rs2[31:0]

rd ← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.5 AND: a bitwise AND instruction

Syntax:

and rd, rs1, rs2

Operation:

rd ← rs1 & rs2

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

www.t-head.cn 137

Chapter 14. Appendix A Standard Instructions

14.1.6 ANDI: an immediate bitwise AND instruction

Syntax:

andi rd, rs1, imm12

Operation:

rd ← rs1 & sign_extend(imm12)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.7 AUIPC: an instruction that adds the immediate in the upper bits to the PC

Syntax:

auipc rd, imm20

Operation:

rd ← current pc + sign_extend(imm20<<12)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.8 BEQ: a branch-if-equal instruction

Syntax:

beq rs1, rs2, label

Operation:

www.t-head.cn 138

Chapter 14. Appendix A Standard Instructions

if (rs1 == rs2)

next pc = current pc +sign_extend(imm12<<1)

else

next pc = current pc + 4

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

The compiler calculates immediate 12 based on the label.

The jump range of the instruction is ±4 KB address space.

Instruction format:

14.1.9 BGE: a signed branch-if-greater-than-or-equal instruction

Syntax:

bge rs1, rs2, label

Operation:

if (rs1 >= rs2)

next pc = current pc + sign_extend(imm12 <<1)

else

next pc = current pc + 4

Permission:

M mode/S mode/U mode

www.t-head.cn 139

Chapter 14. Appendix A Standard Instructions

Exception:

None

Notes:

The compiler calculates immediate 12 based on the label.

The jump range of the instruction is ±4 KB address space.

Instruction format:

14.1.10 BGEU: an unsigned branch-if-greater-than-or-equal instruction

Syntax:

bgeu rs1, rs2, label

Operation:

if (rs1 >= rs2)

next pc = current pc + sign_extend(imm12<<1)

else

next pc = current pc + 4

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

The compiler calculates immediate 12 based on the label.

The jump range of the instruction is ±4 KB address space.

Instruction format:

www.t-head.cn 140

Chapter 14. Appendix A Standard Instructions

14.1.11 BLT: a signed branch-if-less-than instruction

Syntax:

blt rs1, rs2, label

Operation:

if (rs1 < rs2)

next pc = current pc + sign_extend(imm12<<1)

else

next pc = current pc + 4

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

The compiler calculates immediate 12 based on the label.

The jump range of the instruction is ±4 KB address space.

Instruction format:

14.1.12 BLTU: an unsigned branch-if-less-than instruction

Syntax:

bltu rs1, rs2, label

Operation:

if (rs1 < rs2)

next pc = current pc + sign_extend(imm12<<1)

else

next pc = current pc + 4

Permission:

M mode/S mode/U mode

www.t-head.cn 141

Chapter 14. Appendix A Standard Instructions

Exception:

None

Notes:

The compiler calculates immediate 12 based on the label.

The jump range of the instruction is ±4 KB address space.

Instruction format:

14.1.13 BNE: a branch-if-not-equal instruction

Syntax:

bne rs1, rs2, label

Operation:

if (rs1 != rs2)

next pc = current pc + sign_extend(imm12<<1)

else

next pc = current pc + 4

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

The compiler calculates immediate 12 based on the label.

The jump range of the instruction is ±4 KB address space.

Instruction format:

www.t-head.cn 142

Chapter 14. Appendix A Standard Instructions

14.1.14 CSRRC: a move instruction that clears control registers

Syntax:

csrrc rd, csr, rs1

Operation:

rd ← csr

csr ← csr & (~rs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

Accessible control registers vary under different privileges. For more information, see the descriptions
of control registers.

When rs1 = x0, this instruction does not initiate write operations and therefore does not cause write-
related exceptions.

Instruction format:

14.1.15 CSRRCI: a move instruction that clears immediates in control registers

Syntax:

csrrci rd, csr, imm5

Operation:

rd ← csr

csr ← csr & ~zero_extend(imm5)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

www.t-head.cn 143

Chapter 14. Appendix A Standard Instructions

Accessible control registers vary under different privileges. For more information, see the descriptions
of control registers.

When rs1 = x0, this instruction does not initiate write operations and therefore does not cause write-
related exceptions.

Instruction format:

14.1.16 CSRRS: a move instruction for setting control registers

Syntax:

csrrs rd, csr, rs1

Operation:

rd ← csr

csr ← csr | rs1

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

Accessible control registers vary under different privileges. For more information, see the descriptions
of control registers.

When rs1 = x0, this instruction does not initiate write operations and therefore does not cause write-
related exceptions.

Instruction format:

14.1.17 CSRRSI: a move instruction for setting immediates in control registers

Syntax:

csrrsi rd, csr, imm5

Operation:

www.t-head.cn 144

Chapter 14. Appendix A Standard Instructions

rd ← csr

csr ← csr | zero_extend(imm5)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

Accessible control registers vary under different privileges. For more information, see the descriptions
of control registers.

When rs1 = x0, this instruction does not initiate write operations and therefore does not cause write-
related exceptions.

Instruction format:

14.1.18 CSRRW: a move instruction that reads/writes control registers

Syntax:

csrrw rd, csr, rs1

Operation:

rd ← csr

csr ← rs1

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

Accessible control registers vary under different privileges. For more information, see the descriptions
of control registers.

When rs1 = x0, this instruction does not initiate write operations and therefore does not cause write-
related exceptions.

Instruction format:

www.t-head.cn 145

Chapter 14. Appendix A Standard Instructions

14.1.19 CSRRWI: a move instruction that reads/writes immediates in control registers

Syntax:

csrrwi rd, csr, imm5

Operation:

rd ← csr

csr[4:0] ← imm5

csr[63:5] ← csr[63:5]

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

Accessible control registers vary under different privileges. For more information, see the descriptions
of control registers.

When rs1 = x0, this instruction does not initiate write operations and therefore does not cause write-
related exceptions.

Instruction format:

14.1.20 EBREAK: a breakpoint instruction

Syntax:

ebreak

Operation:

Generates breakpoint exceptions or enables the core to enter the debug mode.

Permission:

M mode/S mode/U mode

www.t-head.cn 146

Chapter 14. Appendix A Standard Instructions

Exception:

Breakpoint exceptions

Instruction format:

14.1.21 ECALL: an environment call instruction

Syntax:

ecall

Operation:

Generates environment call exceptions.

Permission:

M mode/S mode/U mode

Exception:

U-mode, S-mode, and M-mode environment call exceptions

Instruction format:

14.1.22 FENCE: a memory synchronization instruction

Syntax:

fence iorw, iorw

Operation:

Ensures that all memory or device read/write instructions before this instruction are observed earlier
than those after this instruction.

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the PI and SO bits are both 1, the instruction syntax is fence i,o, and so on.

www.t-head.cn 147

Chapter 14. Appendix A Standard Instructions

Instruction format:

14.1.23 FENCE.I: an instruction stream synchronization instruction

Syntax:

fence.i

Operation:

Clears the I-Cache to ensure that the data access results before this instruction can be accessed by fetch
operations after the instruction.

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.24 JAL: an instruction for directly jumping to a subroutine

Syntax:

jal rd, label

Operation:

next pc ← current pc + sign_extend(imm20<<1)

rd ← current pc + 4

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

The compiler calculates immediate 20 based on the label.

The jump range of the instruction is ±1 MB address space.

www.t-head.cn 148

Chapter 14. Appendix A Standard Instructions

Instruction format:

14.1.25 JALR: an instruction for jumping to a subroutine by using an address in a
register

Syntax:

jalr rd, rs1, imm12

Operation:

next pc ← (rs1 + sign_extend(imm12)) & 64’hfffffffffffffffe

rd ← current pc + 4

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the CPU runs in M-mode or the MMU is disabled, the jump range of the instruction is the entire
1 TB address space.

When the CPU does not run in M-mode and the MMU is enabled, the jump range of the instruction is
the entire 512 GB address space.

Instruction format:

14.1.26 LB: a sign-extended byte load instruction

Syntax:

lb rd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

rd ← sign_extend(mem[address])

www.t-head.cn 149

Chapter 14. Appendix A Standard Instructions

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

14.1.27 LBU: an unsign-extended byte load instruction

Syntax:

lbu rd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

rd ← zero_extend(mem[address])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

14.1.28 LD: a doubleword load instruction

Syntax:

ld rd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

rd ← mem[(address+7):address]

Permission:

M mode/S mode/U mode

www.t-head.cn 150

Chapter 14. Appendix A Standard Instructions

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

14.1.29 LH: a sign-extended halfword load instruction

Syntax:

lh rd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

rd ← sign_extend(mem[(address+1):address])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

14.1.30 LHU: an unsign-extended halfword load instruction

Syntax:

lhu rd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

rd ← zero_extend(mem[(address+1):address])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

www.t-head.cn 151

Chapter 14. Appendix A Standard Instructions

14.1.31 LUI: an instruction for loading the immediate in the upper bits

Syntax:

lui rd, imm20

Operation:

rd←sign_extend(imm20<<12)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.32 LW: a sign-extended word load instruction

Syntax:

lw rd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

rd ← sign_extend(mem[(address+3):address])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

www.t-head.cn 152

Chapter 14. Appendix A Standard Instructions

14.1.33 LWU: an unsign-extended word load instruction

Syntax:

lwu rd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

rd ← zero_extend(mem[(address+3):address])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

14.1.34 MRET: an instruction for returning from exceptions in M-mode

Syntax:

mret

Operation:

next pc← mepc

mstatus.mie ←mstatus.mpie

mstatus.mpie ←1

Permission:

M mode

Exception:

Illegal instruction.

Instruction format:

www.t-head.cn 153

Chapter 14. Appendix A Standard Instructions

14.1.35 OR: a bitwise OR instruction

Syntax:

or rd, rs1, rs2

Operation:

rd ← rs1 | rs2

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.36 ORI: an immediate bitwise OR instruction

Syntax:

ori rd, rs1, imm12

Operation:

rd ← rs1 | sign_extend(imm12)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.37 SB: a byte store instruction

Syntax:

sb rs2, imm12(rs1)

Operation:

www.t-head.cn 154

Chapter 14. Appendix A Standard Instructions

address←rs1+sign_extend(imm12)

mem[:address] ← rs2[7:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Instruction format:

14.1.38 SD: a doubleword store instruction

Syntax:

sd rs2, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

mem[(address+7):address] ← rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Instruction format:

14.1.39 SFENCE.VMA: a virtual memory synchronization instruction

Syntax:

sfence.vma rs1,rs2

Operation:

Invalidates and synchronizes virtual memory.

Permission:

M mode/S mode

www.t-head.cn 155

Chapter 14. Appendix A Standard Instructions

Exception:

Illegal instruction.

Notes:

When the TVM bit in the mstatus is 1, running this instruction in S-mode will trigger an illegal
instruction exception.

rs1 is the virtual address, and rs2 is the address space identifier (ASID).

• When rs1 and rs2 are both x0, all TLB entries are invalidated.

• When rs1! and rs2 are both x0, all TLB entries that hit the virtual address specified by rs1 are
invalidated.

• When rs1 and rs2! are both x0, all TLB entries that hit the process ID specified by rs2 are invalidated.

• When rs1! and rs2! are both x0, all TLB entries that hit the virtual address specified by rs1 and the
process ID specified by rs2 are invalidated.

Instruction format:

14.1.40 SH: a halfword store instruction

Syntax:

sh rs2, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

mem[(address+1):address] ← rs2[15:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Instruction format:

www.t-head.cn 156

Chapter 14. Appendix A Standard Instructions

14.1.41 SLL: a logical left shift instruction

Syntax:

sll rd, rs1, rs2

Operation:

rd← rs1 << rs2[5:0]

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.42 SLLI: an immediate logical left shift instruction

Syntax:

slli rd, rs1, shamt6

Operation:

rd← rs1 << shamt6

Permission:

M mode/S mode/U mode

Exception:

www.t-head.cn 157

Chapter 14. Appendix A Standard Instructions

None

Instruction format:

14.1.43 SLLIW: an immediate logical left shift instruction that operates on the lower
32 bits

Syntax:

slliw rd, rs1, shamt5

Operation:

tmp[31:0]←(rs1[31:0] << shamt5)[31:0]

rd← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.44 SLLW: a logical left shift instruction that operates on the lower 32 bits

Syntax:

sllw rd, rs1, rs2

Operation:

tmp[31:0]← (rs1[31:0] << rs2[4:0])[31:0]

rd←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

www.t-head.cn 158

Chapter 14. Appendix A Standard Instructions

14.1.45 SLT: a signed set-if-less-than instruction

Syntax:

slt rd, rs1, rs2

Operation:

if (rs1 < rs2)

rd←1

else

rd←0

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.46 SLTI: a signed set-if-less-than-immediate instruction

Syntax:

slti rd, rs1, imm12

Operation:

if (rs1 <sign_extend(imm12))

rd←1

else

rd←0

Permission:

M mode/S mode/U mode

www.t-head.cn 159

Chapter 14. Appendix A Standard Instructions

Exception:

None

Instruction format:

14.1.47 SLTIU: an unsigned set-if-less-than-immediate instruction

Syntax:

sltiu rd, rs1, imm12

Operation:

if (rs1 <zero_extend(imm12))

rd←1

else

rd←0

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.48 SLTU: an unsigned set-if-less-than instruction

Syntax:

sltu rd, rs1, rs2

Operation:

if (rs1 < rs2)

rd←1

else

rd←0

Permission:

www.t-head.cn 160

Chapter 14. Appendix A Standard Instructions

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.49 SRA: an arithmetic right shift instruction

Syntax:

sra rd, rs1, rs2

Operation:

rd←rs1 >>> rs2[5:0]

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.50 SRAI: an immediate arithmetic right shift instruction

Syntax:

srai rd, rs1, shamt6

Operation:

rd← rs1 >>>shamt6

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

www.t-head.cn 161

Chapter 14. Appendix A Standard Instructions

14.1.51 SLLIW: an immediate arithmetic right shift instruction that operates on the
lower 32 bits

Syntax:

sraiw rd, rs1, shamt5

Operation:

tmp[31:0]←(rs1[31:0] >>> shamt5)[31:0]

rd← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.52 SRAW: an arithmetic right shift instruction that operates on the lower 32 bits

Syntax:

sraw rd, rs1, rs2

Operation:

tmp←(rs1[31:0] >>> rs2[4:0])[31:0]

rd←sign_extend(tmp)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

www.t-head.cn 162

Chapter 14. Appendix A Standard Instructions

14.1.53 SRET: an instruction for returning from exceptions in S-mode

Syntax:

sret

Operation:

next pc← sepc

sstatus.sie ←sstatus.spie

sstatus.spie ←1

Permission:

S mode

Exception:

Illegal instruction.

Instruction format:

14.1.54 SRL: a logical right shift instruction

Syntax:

srl rd, rs1, rs2

Operation:

rd←rs1 >> rs2[5:0]

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.55 SRLI: an immediate logical right shift instruction

Syntax:

srli rd, rs1, shamt6

www.t-head.cn 163

Chapter 14. Appendix A Standard Instructions

Operation:

rd← rs1 >> shamt6

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.56 SRLIW: an immediate logical right shift instruction that operates on the lower
32 bits

Syntax:

srliw rd, rs1, shamt5

Operation:

tmp[31:0]←(rs1[31:0] >> shamt5)[31:0]

rd← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.57 SRLW: a logical right shift instruction that operates on the lower 32 bits

Syntax:

srlw rd, rs1, rs2

Operation:

tmp←(rs1[31:0] >> rs2[4:0])[31:0]

rd←sign_extend(tmp)

www.t-head.cn 164

Chapter 14. Appendix A Standard Instructions

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.58 SUB: a signed subtract instruction

Syntax:

sub rd, rs1, rs2

Operation:

rd ← rs1 - rs2

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.59 SUBW: a signed subtract instruction that operates on the lower 32 bits

Syntax:

subw rd, rs1, rs2

Operation:

tmp[31:0] ← rs1[31:0] - rs2[31:0]

rd ← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

www.t-head.cn 165

Chapter 14. Appendix A Standard Instructions

Instruction format:

14.1.60 SW: a word store instruction

Syntax:

sw rs2, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

mem[(address+3):address] ← rs2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Instruction format:

14.1.61 WFI: an instruction for entering the low power mode

Syntax:

wfi

Operation:

Triggers the CPU to enter the low power mode. In this mode, the CPU clock and most device clocks
are disabled.

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

www.t-head.cn 166

Chapter 14. Appendix A Standard Instructions

14.1.62 XOR: a bitwise XOR instruction

Syntax:

xor rd, rs1, rs2

Operation:

rd ← rs1 ^ rs2

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.1.63 XORI: an immediate bitwise XOR instruction

Syntax:

xori rd, rs1, imm12

Operation:

rd ← rs1 & sign_extend(imm12)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.2 Appendix A-2 M instructions

The following describes the RISC-V M instructions implemented by C910. The instructions are 32 bits wide
and sorted in alphabetic order.

www.t-head.cn 167

Chapter 14. Appendix A Standard Instructions

14.2.1 DIV: a signed divide instruction

Syntax:

div rd, rs1, rs2

Operation:

rd ← rs1 / rs2

Permission:

Machine mode (M-mode)/Supervisor mode (S-mode)/User mode (U-mode)

Exception:

None

Notes:

When the divisor is 0, the division result is 0xffffffffffffffff.

When overflow occurs, the division result is 0x8000000000000000.

Instruction format:

14.2.2 DIVU: an unsigned divide instruction

Syntax:

divu rd, rs1, rs2

Operation:

rd ← rs1 / rs2

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the divisor is 0, the division result is 0xffffffffffffffff.

Instruction format:

www.t-head.cn 168

Chapter 14. Appendix A Standard Instructions

14.2.3 DIVUW: an unsigned divide instruction that operates on the lower 32 bits

Syntax:

divuw rd, rs1, rs2

Operation:

tmp[31:0] ← (rs1[31:0] / rs2[31:0])[31:0]

rd←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the divisor is 0, the division result is 0xffffffffffffffff.

Instruction format:

14.2.4 DIVW: a signed divide instruction that operates on the lower 32 bits

Syntax:

divw rd, rs1, rs2

Operation:

tmp[31:0] ← (rs1[31:0] / rs2[31:0])[31:0]

rd←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the divisor is 0, the division result is 0xffffffffffffffff.

When overflow occurs, the division result is 0xffffffff80000000.

Instruction format:

www.t-head.cn 169

Chapter 14. Appendix A Standard Instructions

14.2.5 MUL: a signed multiply instruction

Syntax:

mul rd, rs1, rs2

Operation:

rd ← (rs1 * rs2)[63:0]

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.2.6 MULH: a signed multiply instruction that extracts the upper bits

Syntax:

mulh rd, rs1, rs2

Operation:

rd ← (rs1 * rs2)[127:64]

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.2.7 MULHSU: a signed-unsigned multiply instruction that extracts the upper bits

Syntax:

www.t-head.cn 170

Chapter 14. Appendix A Standard Instructions

mulusu rd, rs1, rs2

Operation:

rd ← (rs1 * rs2)[127:64]

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 indicates a signed number, and rs2 indicates an unsigned number.

Instruction format:

14.2.8 MULHU: an unsigned multiply instruction that extracts the upper bits

Syntax:

mulhu rd, rs1, rs2

Operation:

rd ← (rs1 * rs2)[127:64]

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.2.9 MULW: a signed multiply instruction that operates on the lower 32 bits

Syntax:

mulw rd, rs1, rs2

Operation:

www.t-head.cn 171

Chapter 14. Appendix A Standard Instructions

tmp ← (rs1[31:0] * rs2[31:0])[31:0]

rd ← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.2.10 REM: a signed remainder instruction

Syntax:

rem rd, rs1, rs2

Operation:

rd ← rs1 % rs2

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the divisor is 0, the remainder operation result is the dividend.

When overflow occurs, the remainder operation result is 0x0.

Instruction format:

14.2.11 REMU: an unsigned remainder instruction

Syntax:

remu rd, rs1, rs2

Operation:

rd ← rs1 % rs2

www.t-head.cn 172

Chapter 14. Appendix A Standard Instructions

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the divisor is 0, the remainder operation result is the dividend.

Instruction format:

14.2.12 REMUW: an unsigned remainder instruction that operates on the lower 32
bits

Syntax:

remw rd, rs1, rs2

Operation:

tmp ← (rs1[31:0] % rs2[31:0])[31:0]

rd ← sign_extend(tmp)

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the divisor is 0, the remainder operation result is obtained by extending the signed bit [31] of the
dividend.

Instruction format:

14.2.13 REMW: a signed remainder instruction that operates on the lower 32 bits

Syntax:

remw rd, rs1, rs2

www.t-head.cn 173

Chapter 14. Appendix A Standard Instructions

Operation:

tmp[31:0] ← (rs1[31:0] % rs2[31:0])[31:0]

rd ← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the divisor is 0, the remainder operation result is obtained by extending the signed bit [31] of the
dividend.

When overflow occurs, the remainder operation result is 0x0.

Instruction format:

14.3 Appendix A-3 A instructions

The following describes the RISC-V A instructions implemented by C910. The instructions are 32 bits wide
and sorted in alphabetic order.

14.3.1 AMOADD.D: an atomic add instruction

Syntax:

amoadd.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← mem[rs1+7:rs1] + rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

www.t-head.cn 174

Chapter 14. Appendix A Standard Instructions

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoadd.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoadd.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoadd.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoadd.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

14.3.2 AMOADD.W: an atomic add instruction that operates on the lower 32 bits

Syntax:

amoadd.w.aqrl rd, rs2, (rs1)

Operation:

rd ←sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1]← mem[rs1+3:rs1] + rs2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

www.t-head.cn 175

Chapter 14. Appendix A Standard Instructions

• When aq and rl are both 0, the corresponding assembler instruction is amoadd.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoadd.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoadd.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoadd.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

14.3.3 AMOAND.D: an atomic bitwise AND instruction

Syntax:

amoand.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← mem[rs1+7:rs1] & rs2

Permission: M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoand.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoand.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

www.t-head.cn 176

Chapter 14. Appendix A Standard Instructions

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoand.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoand.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

14.3.4 AMOAND.W: an atomic bitwise AND instruction that operates on the lower
32 bits

Syntax:

amoand.w.aqrl rd, rs2, (rs1)

Operation:

rd ← sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] ← mem[rs1+3:rs1] & rs2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoand.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoand.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

www.t-head.cn 177

Chapter 14. Appendix A Standard Instructions

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoand.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoand.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

14.3.5 AMOMAX.D: an atomic signed MAX instruction

Syntax:

amomax.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← max(mem[rs1+7:rs1], rs2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amomax.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amomax.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amomax.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

www.t-head.cn 178

Chapter 14. Appendix A Standard Instructions

• When aq and rl are both 1, the corresponding assembler instruction is amomax.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

14.3.6 AMOMAX.W: an atomic signed MAX instruction that operates on the lower
32 bits

Syntax:

amomax.w.aqrl rd, rs2, (rs1)

Operation:

rd ← sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1]← max(mem[rs1+3:rs1], rs2[31:0])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amomax.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amomax.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amomax.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amomax.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-

www.t-head.cn 179

Chapter 14. Appendix A Standard Instructions

tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

14.3.7 MOMAXU.DA: an atomic unsigned MAX instruction

Syntax:

amomaxu.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← max(mem[rs1+7:rs1], rs2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amomaxu.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amomaxu.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amomaxu.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amomaxu.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

www.t-head.cn 180

Chapter 14. Appendix A Standard Instructions

14.3.8 AMOMAXU.W: an atomic unsigned MAX instruction that operates on the
lower 32 bits.

Syntax:

amomaxu.w.aqrl rd, rs2, (rs1)

Operation:

rd ← zero_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] ← max(mem[rs1+3:rs1], rs2[31:0])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amomaxu.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amomaxu.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amomaxu.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amomaxu.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

www.t-head.cn 181

Chapter 14. Appendix A Standard Instructions

14.3.9 AMOMIN.D: an atomic signed MIN instruction

Syntax:

amomin.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← min(mem[rs1+7:rs1],rs2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amomin.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amomin.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amomin.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amomin.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

www.t-head.cn 182

Chapter 14. Appendix A Standard Instructions

14.3.10 AMOMIN.W: an atomic signed MIN instruction that operates on the lower
32 bits

Syntax:

amomin.w.aqrl rd, rs2, (rs1)

Operation:

rd ← sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] ← min(mem[rs1+3:rs1], rs2[31:0])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amomin.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amomin.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amomin.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amomin.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

www.t-head.cn 183

Chapter 14. Appendix A Standard Instructions

14.3.11 AMOMINU.D: an atomic unsigned MIN instruction

Syntax:

amominu.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← min(mem[rs1+7:rs1], rs2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amominu.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amominu.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amominu.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amominu.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

www.t-head.cn 184

Chapter 14. Appendix A Standard Instructions

14.3.12 AMOMINU.W: an atomic unsigned MIN instruction that operates on the
lower 32 bits

Syntax:

amominu.w.aqrl rd, rs2, (rs1)

Operation:

rd ← sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] ← min(mem[rs1+3:rs1], rs2[31:0])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amominu.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amominu.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amominu.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amominu.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

www.t-head.cn 185

Chapter 14. Appendix A Standard Instructions

14.3.13 AMOOR.D: an atomic bitwise OR instruction.

Syntax:

amoor.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← mem[rs1+7:rs1] | rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoor.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoor.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoor.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoor.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

14.3.14 AMOOR.W: an atomic bitwise OR instruction that operates on the lower 32
bits

Syntax:

www.t-head.cn 186

Chapter 14. Appendix A Standard Instructions

amoor.w.aqrl rd, rs2, (rs1)

Operation:

rd ← sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] ← mem[rs1+3:rs1] | rs2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoor.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoor.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoor.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoor.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

14.3.15 AMOSWAP.D: an atomic swap instruction

Syntax:

amoswap.d.aqrl rd, rs2, (rs1)

Operation:

www.t-head.cn 187

Chapter 14. Appendix A Standard Instructions

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ←rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits: None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoswap.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoswap.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoswap.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoswap.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

14.3.16 AMOSWAP.W: an atomic swap instruction that operates on the lower 32 bits

Syntax:

amoswap.w.aqrl rd, rs2, (rs1)

Operation:

rd ← sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] ←rs2[31:0]

Permission:

M mode/S mode/U mode

www.t-head.cn 188

Chapter 14. Appendix A Standard Instructions

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits: None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoswap.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoswap.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoswap.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoswap.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

14.3.17 AMOXOR.D: an atomic bitwise XOR instruction

Syntax:

amoxor.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← mem[rs1+7:rs1] ^ rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

www.t-head.cn 189

Chapter 14. Appendix A Standard Instructions

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoxor.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoxor.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoxor.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoxor.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

14.3.18 AMOXOR.W: an atomic bitwise XOR instruction that operates on the lower
32 bits

Syntax:

amoxor.w.aqrl rd, rs2, (rs1)

Operation:

rd ← sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] ← mem[rs1+3:rs1] ^ rs2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

www.t-head.cn 190

Chapter 14. Appendix A Standard Instructions

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoxor.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoxor.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoxor.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoxor.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

14.3.19 LR.D: a doubleword load-reserved instruction

Syntax:

lr.d.aqrl rd, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] is reserved

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is lr.d rd, (rs1).

www.t-head.cn 191

Chapter 14. Appendix A Standard Instructions

• When aq is 0 and rl is 1, the corresponding assembler instruction is lr.d.rl rd, (rs1). Results of all
memory access instructions before this instruction must be observed before this instruction is executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is lr.d.aq rd, (rs1). All memory access
instructions after this instruction can be executed only after execution of this instruction is completed.

• When aq and rl are both 1, the corresponding assembler instruction is lr.d.aqrl rd, (rs1). Results of all
memory access instructions before this instruction must be observed before this instruction is executed,
and all memory access instructions after this instruction can be executed only after execution of this
instruction is completed.

Instruction format:

14.3.20 LR.W: a word load-reserved instruction

Syntax:

lr.w.aqrl rd, (rs1)

Operation:

rd ←sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] is reserved

Permission:

M mode/S mode/U mode

Exception: Unaligned access exceptions, access error exceptions, and page error exceptions on atomic
instructions

Affected flag bits: None

Notes: The aq and rl bits determine the sequences of executing the memory access instructions before
and after this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is lr.w rd, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is lr.w.rl rd, (rs1). Results of all
memory access instructions before this instruction must be observed before this instruction is executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is lr.w.aq rd, (rs1). All memory access
instructions after this instruction can be executed only after execution of this instruction is completed.

• When aq and rl are both 1, the corresponding assembler instruction is lr.w.aqrl rd, (rs1). Results of all
memory access instructions before this instruction must be observed before this instruction is executed,
and all memory access instructions after this instruction can be executed only after execution of this
instruction is completed.

www.t-head.cn 192

Chapter 14. Appendix A Standard Instructions

Instruction format:

14.3.21 SC.D: a doubleword store-conditional instruction

Syntax:

sc.d.aqrl rd, rs2, (rs1)

Operation:

If(mem[rs1+7:rs1] is reserved)

mem[rs1+7: rs1] ← rs2

rd ← 0

else

rd ← 1

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is sc.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is sc.d.rl rd, rs2, (rs1). Results of all
memory access instructions before this instruction must be observed before this instruction is executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is sc.d.aq rd, rs2, (rs1). All memory
access instructions after this instruction can be executed only after execution of this instruction is
completed.

• When aq and rl are both 1, the corresponding assembler instruction is sc.d.aqrl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed, and all memory access instructions after this instruction can be executed only after execution
of this instruction is completed.

www.t-head.cn 193

Chapter 14. Appendix A Standard Instructions

Instruction format:

14.3.22 SC.W: a word store-conditional instruction

Syntax:

sc.w.aqrl rd, rs2, (rs1)

Operation:

if(mem[rs1+3:rs1] is reserved)

mem[rs1+3:rs1] ← rs2[31:0]

rd ← 0

else

rd ← 1

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after
this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is sc.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is sc.w.rl rd, rs2, (rs1). Results of all
memory access instructions before this instruction must be observed before this instruction is executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is sc.w.aq rd, rs2, (rs1). All memory
access instructions after this instruction can be executed only after execution of this instruction is
completed.

• When aq and rl are both 1, the corresponding assembler instruction is sc.w.aqrl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed, and all memory access instructions after this instruction can be executed only after execution
of this instruction is completed.

www.t-head.cn 194

Chapter 14. Appendix A Standard Instructions

Instruction format:

14.4 Appendix A-4 F instructions

The following describes the RISC-V F instructions implemented by C910. The instructions are 32 bits wide
and sorted in alphabetic order.

For single-precision floating-point instructions, if the upper 32 bits in the source register are not all 1,
the single-precision data is treated as qNaN.

When the fs bit in the mstatus register is 2’b00, running any instruction listed in this appendix will
trigger an illegal instruction exception. When the fs bit in the mstatus register is not 2’b00, it is set to 2’
b11 after any instruction listed in this appendix is executed.

14.4.1 FADD.S: a single-precision floating-point add instruction

Syntax:

fadd.s fd, fs1, fs2, rm

Operation:

frd ← fs1 + fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fadd.s
fd, fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fadd.s fd, fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fadd.s fd, fs1, fs2,
rdn.

www.t-head.cn 195

Chapter 14. Appendix A Standard Instructions

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fadd.s fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fadd.s fd,
fs1, fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the floating-point control and status register
(FCSR), fcsr. The corresponding assembler instruction is fadd.s fd, fs1, fs2.

Instruction format:

14.4.2 FCLASS.S: a single-precision floating-point classify instruction

Syntax:

fclass.s rd, fs1

Operation:

if (fs1 = -inf)

rd ← 64’h1

if (fs1 = -norm)

rd ← 64’h2

if (fs1 = -subnorm)

rd ← 64’h4

if (fs1 = -zero)

rd ← 64’h8

if (fs1 = +zero)

rd ← 64’h10

if (fs1 = +subnorm)

rd ← 64’h20

if (fs1 = +norm)

rd ← 64’h40

if (fs1 = +Inf)

www.t-head.cn 196

Chapter 14. Appendix A Standard Instructions

rd ← 64’h80

if (fs1 = sNaN)

rd ← 64’h100

if (fs1 = qNaN)

rd ← 64’h200

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

14.4.3 FCVT.L.S: an instruction that converts a single-precision floating-point number
into a signed long integer

Syntax:

fcvt.l.s rd, fs1, rm

Operation:

rd ← single_convert_to_signed_long(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.l.s
rd, fs1, rne.

www.t-head.cn 197

Chapter 14. Appendix A Standard Instructions

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.l.s rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.l.s rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.l.s rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.l.s rd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.l.s rd, fs1.

Instruction format:

14.4.4 FCVT.LU.S: an instruction that converts a single-precision floating-point num-
ber into an unsigned long integer

Syntax:

fcvt.lu.s rd, fs1, rm

Operation:

rd ← single_convert_to_unsigned_long(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.lu.s
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.lu.s rd, fs1, rtz.

www.t-head.cn 198

Chapter 14. Appendix A Standard Instructions

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.lu.s rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.lu.s rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.lu.s
rd, fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.lu.s rd, fs1.

Instruction format:

14.4.5 FCVT.S.L: an instruction that converts a signed long integer into a single-
precision floating-point number

Syntax:

fcvt.s.l fd, rs1, rm

Operation:

fd ← signed_long_convert_to_single(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.s.l
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.s.l fd, rs1, rtz.

www.t-head.cn 199

Chapter 14. Appendix A Standard Instructions

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.s.l fd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.s.l fd, fs1, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.s.l fd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.s.l fd, fs1.

Instruction format:

14.4.6 FCVT.S.LU: an instruction that converts an unsigned long integer into a single-
precision floating-point number

Syntax:

fcvt.s.l fd, fs1, rm

Operation:

fd ← unsigned_long_convert_to_single_fp(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.s.lu
fd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.s.lu fd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.s.lu fd, fs1,
rdn.

www.t-head.cn 200

Chapter 14. Appendix A Standard Instructions

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.s.lu fd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.s.lu
fd, fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.s.lu fd, fs1.

Instruction format:

14.4.7 FCVT.S.W: an instruction that converts a signed integer into a single-precision
floating-point number

Syntax:

fcvt.s.w fd, rs1, rm

Operation:

fd ← signed_int_convert_to_single(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.s.w
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.s.w fd, rs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.s.w fd, rs1,
rdn.

www.t-head.cn 201

Chapter 14. Appendix A Standard Instructions

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.s.w fd, rs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.s.w fd,
rs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.s.w fd, rs1.

Instruction format:

14.4.8 FCVT.S.WU: an instruction that converts an unsigned integer into a single-
precision floating-point number

Syntax:

fcvt.s.wu fd, rs1, rm

Operation:

fd ← unsigned_int_convert_to_single_fp(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.s.wu
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.s.wu fd, rs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.s.wu fd, rs1,
rdn.

www.t-head.cn 202

Chapter 14. Appendix A Standard Instructions

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.s.wu fd, rs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.s.wu
fd, rs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.s.wu fd, rs1.

Instruction format:

14.4.9 FCVT.W.S: an instruction that converts a single-precision floating-point num-
ber into a signed integer

Syntax:

fcvt.w.s rd, fs1, rm

Operation:

tmp ← single_convert_to_signed_int(fs1)

rd←sign_extend(tmp)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.w.s
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.w.s rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.w.s rd, fs1,
rdn.

www.t-head.cn 203

Chapter 14. Appendix A Standard Instructions

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.w.s rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.w.s rd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.w.s rd, fs1.

Instruction format:

14.4.10 FCVT.WU.S: an instruction that converts a single-precision floating-point
number into an unsigned integer

Syntax:

fcvt.wu.s rd, fs1, rm

Operation:

tmp ← single_convert_to_unsigned_int(fs1)

rd←sign_extend(tmp)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.wu.s
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.wu.s rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.wu.s rd, fs1,
rdn.

www.t-head.cn 204

Chapter 14. Appendix A Standard Instructions

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.wu.s rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.wu.s
rd, fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.wu.s rd, fs1.

Instruction format:

14.4.11 FDIV.S: a single-precision floating-point divide instruction

Syntax:

fdiv.s fd, fs1, fs2, rm

Operation:

fd ← fs1 / fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, DZ, OF, UF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fdiv.s
fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fdiv.s fd fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fdiv.s fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fdiv.s fd, fs1, fs2,
rup.

www.t-head.cn 205

Chapter 14. Appendix A Standard Instructions

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fdiv.s fd,
fs1, fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fdiv.s fd, fs1, fs2.

Instruction format:

14.4.12 FEQ.S: a single-precision floating-point compare equal instruction

Syntax:

feq.s rd, fs1, fs2

Operation:

if(fs1 == fs2)

rd ← 1

else

rd ← 0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

14.4.13 FLE.S: a single-precision floating-point compare less than or equal to instruc-
tion

Syntax:

fle.s rd, fs1, fs2

www.t-head.cn 206

Chapter 14. Appendix A Standard Instructions

Operation:

if(fs1 <= fs2)

rd ← 1

else

rd ← 0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

14.4.14 FLT.S: a single-precision floating-point compare less than instruction

Syntax:

flt.s rd, fs1, fs2

Operation:

if(fs1 < fs2)

rd ← 1

else

rd ← 0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

www.t-head.cn 207

Chapter 14. Appendix A Standard Instructions

14.4.15 FLW: a single-precision floating-point load instruction

Syntax:

flw fd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

fd[31:0] ← mem[(address+3):address]

fd[63:32] ← 32’hffffffff

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or Illegal instruction.

Affected flag bits:

None

Instruction format:

14.4.16 FMADD.S: a single-precision floating-point multiply-add instruction

Syntax:

fmadd.s fd, fs1, fs2, fs3, rm

Operation:

rd ← fs1*fs2 + fs3

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

www.t-head.cn 208

Chapter 14. Appendix A Standard Instructions

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmadd.s
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmadd.s fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmadd.s fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmadd.s fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmadd.s
fd, fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmadd.s fd, fs1, fs2, fs3.

Instruction format:

14.4.17 FMAX.S: a single-precision floating-point MAX instruction

Syntax:

fmax.s fd, fs1, fs2

Operation:

if(fs1 >= fs2)

fd ← fs1

else

fd ← fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

www.t-head.cn 209

Chapter 14. Appendix A Standard Instructions

Floating-point status bit NV

Instruction format:

14.4.18 FMIN.S: a single-precision floating-point MIN instruction

Syntax:

fmin.s fd, fs1, fs2

Operation:

if(fs1 >= fs2)

fd ← fs2

else

fd ← fs1

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

14.4.19 FMSUB.S: a single-precision floating-point multiply-subtract instruction

Syntax:

fmsub.s fd, fs1, fs2, fs3, rm

Operation:

fd ← fs1*fs2 - fs3

Permission:

M mode/S mode/U mode

www.t-head.cn 210

Chapter 14. Appendix A Standard Instructions

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmsub.s
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmsub.s fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmsub.s fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmsub.s fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmsub.s fd,
fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmsub.s fd, fs1, fs2, fs3.

Instruction format:

14.4.20 FMUL.S: a single-precision floating-point multiply instruction

Syntax:

fmul.s fd, fs1, fs2, rm

Operation:

fd ← fs1 * fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

www.t-head.cn 211

Chapter 14. Appendix A Standard Instructions

Affected flag bits:

Floating-point status bits NV, OF, UF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmul.s
fd, fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmul.s fd, fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmul.s fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmul.s fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmul.s fd,
fs1, fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmul.s fs1, fs2.

Instruction format:

14.4.21 FMV.W.X: a single-precision floating-point write move instruction

Syntax:

fmv.w.x fd, rs1

Operation:

fd[31:0] ← rs[31:0]

fd[63:32] ← 32’hffffffff

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

www.t-head.cn 212

Chapter 14. Appendix A Standard Instructions

None

Instruction format:

14.4.22 FMV.X.H: a single-precision floating-point read move instruction

Syntax:

fmv.x.w rd, fs1

Operation:

tmp[31:0] ← fs1[31:0]

rd ← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

14.4.23 FNMADD.S: a single-precision floating-point negate-(multiply-add) instruc-
tion

Syntax:

fnmadd.s fd, fs1, fs2, fs3, rm

Operation:

fd ←-(fs1*fs2 + fs3)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

www.t-head.cn 213

Chapter 14. Appendix A Standard Instructions

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fnmadd.s
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fnmadd.s fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fnmadd.s fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fnmadd.s fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fnmadd.s
fd, fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fnmadd.s fd, fs1, fs2, fs3.

Instruction format:

14.4.24 FNMSUB.S: a single-precision floating-point negate-(multiply-subtract) in-
struction

Syntax:

fnmsub.s fd, fs1, fs2, fs3, rm

Operation:

fd ← -(fs1*fs2 - fs3)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

www.t-head.cn 214

Chapter 14. Appendix A Standard Instructions

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fnmsub.s
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fnmsub.s fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fnmsub.s fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fnmsub.s fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fnmsub.s
fd, fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fnmsub.s fd, fs1, fs2, fs3.

Instruction format:

14.4.25 FSGNJ.S: a single-precision floating-point sign-injection instruction

Syntax:

fsgnj.s fd, fs1, fs2

Operation:

fd[30:0] ← fs1[30:0]

fd[31] ← fs2[31]

fd[63:32] ← 32’hffffffff

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

www.t-head.cn 215

Chapter 14. Appendix A Standard Instructions

None

Instruction format:

14.4.26 FSGNJN.S: a single-precision floating-point negate sign-injection instruction

Syntax:

fsgnjn.s fd, fs1, fs2

Operation:

fd[30:0] ← fs1[30:0]

fd[31] ← ! fs2[31]

fd[63:32] ← 32’hffffffff

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

14.4.27 FSGNJX.S: a single-precision floating-point XOR sign-injection instruction

Syntax:

fsgnjx.s fd, fs1, fs2

Operation:

fd[30:0] ← fs1[30:0]

fd[31] ← fs1[31] ^ fs2[31]

fd[63:32] ← 32’hffffffff

Permission:

M mode/S mode/U mode

www.t-head.cn 216

Chapter 14. Appendix A Standard Instructions

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

14.4.28 FSQRT.S: a single-precision floating-point square-root instruction

Syntax:

fsqrt.s fd, fs1, rm

Operation:

fd ← sqrt(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fsqrt.s
fd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fsqrt.s fd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fsqrt.s fd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fsqrt.s fd, fs1, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fsqrt.s fd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

www.t-head.cn 217

Chapter 14. Appendix A Standard Instructions

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fsqrt.s fd, fs1.

Instruction format:

14.4.29 FSUB.S: a single-precision floating-point subtract instruction

Syntax:

fsub.s fd, fs1, fs2, rm

Operation:

fd ← fs1 - fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fsub.fd,
fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fsub.s fd, fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fsub.s fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fsub.s fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fsub.s fd,
fs1, fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fsub.s fd, fs1, fs2.

www.t-head.cn 218

Chapter 14. Appendix A Standard Instructions

Instruction format:

14.4.30 FSW: a single-precision floating-point store instruction

Syntax:

fsw fs2, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

mem[(address+31):address] ← fs2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

14.5 Appendix A-5 D instructions

The following describes the RISC-V D instructions implemented by C910. The instructions are 32 bits wide
and sorted in alphabetic order.

When the fs bit in the mstatus register is 2’b00, running any instruction listed in this appendix will
trigger an illegal instruction exception. When the fs bit in the mstatus register is not 2’b00, it is set to 2’
b11 after any instruction listed in this appendix is executed.

14.5.1 FADD.D: a double-precision floating-point add instruction

Syntax:

fadd.d fd, fs1, fs2, rm

Operation:

fd ← fs1 + fs2

Permission:

www.t-head.cn 219

Chapter 14. Appendix A Standard Instructions

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fadd.d
fd, fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fadd.d fd, fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fadd.d fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fadd.d fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fadd.d fd,
fs1, fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fadd.d fd, fs1, fs2.

Instruction format:

14.5.2 FCLASS.D: a double-precision floating-point classify instruction

Syntax:

fclass.d rd, fs1

Operation: if (fs1 = -Inf)

rd ← 64’h1

if (fs1 = -norm)

rd ← 64’h2

if (fs1 = -subnorm)

www.t-head.cn 220

Chapter 14. Appendix A Standard Instructions

rd ← 64’h4

if (fs1 = -zero)

fd ← 64’h8

if (fs1 = +Zero)

rd ← 64’h10

if (fs1 = +subnorm)

rd ← 64’h20

if (fs1 = +norm)

rd ← 64’h40

if (fs1 = +Inf)

rd ← 64’h80

if (fs1 = sNaN)

rd ← 64’h100

if (fs1 = qNaN)

rd ← 64’h200

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

14.5.3 FCVT.D.L: an instruction that converts a signed long integer into a double-
precision floating-point number

Syntax:

fcvt.d.l fd, rs1, rm

Operation:

fd ← signed_long_convert_to_double(fs1)

www.t-head.cn 221

Chapter 14. Appendix A Standard Instructions

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.d.l
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.d.l fd, rs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.d.l fd, rs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.d.l fd, rs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.d.l fd,
rs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.d.l fd, rs1.

Instruction format:

14.5.4 FCVT.D.LU: an instruction that converts an unsigned long integer into a
double-precision floating-point number

Syntax:

fcvt.d.lu fd, rs1, rm

Operation:

fd ← unsigned_long_convert_to_double(fs1)

Permission:

www.t-head.cn 222

Chapter 14. Appendix A Standard Instructions

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.d.lu
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.d.lu fd, rs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.d.lu fd, rs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.d.lu fd, rs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.d.lu
fd, rs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.d.lu fd, rs1.

Instruction format:

14.5.5 FCVT.D.S: an instruction that converts a single-precision floating-point number
into a double-precision floating-point number

Syntax:

fcvt.d.s fd, fs1

Operation:

fd ← single_convert_to_double(fs1)

Permission:

M mode/S mode/U mode

www.t-head.cn 223

Chapter 14. Appendix A Standard Instructions

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

14.5.6 FCVT.D.W: an instruction that converts a signed integer into a double-precision
floating-point number

Syntax:

fcvt.d.w fd, rs1

Operation:

fd ← signed_int_convert_to_double(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

14.5.7 FCVT.D.WU: an instruction that converts an unsigned integer into a double-
precision floating-point number

Syntax:

fcvt.d.wu fd, rs1

Operation:

fd ← unsigned_int_convert_to_double(fs1)

Permission:

www.t-head.cn 224

Chapter 14. Appendix A Standard Instructions

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

14.5.8 FCVT.L.D: an instruction that converts a double-precision floating-point num-
ber into a signed long integer

Syntax:

fcvt.l.d rd, fs1, rm

Operation:

rd ← double_convert_to_signed_long(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.l.d
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.l.d rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.l.d rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.l.d rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.l.d rd,
fs1, rmm.

www.t-head.cn 225

Chapter 14. Appendix A Standard Instructions

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.l.d rd, fs1.

Instruction format:

14.5.9 FCVT.LU.D: an instruction that converts a double-precision floating-point num-
ber into an unsigned long integer

Syntax:

fcvt.lu.d rd, fs1, rm

Operation:

rd ← double_convert_to_unsigned_long(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.lu.d
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.lu.d rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.lu.d rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.lu.d rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.lu.d
rd, fs1, rmm.

• 3’b101: This code is reserved and not used.

www.t-head.cn 226

Chapter 14. Appendix A Standard Instructions

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.lu.d rd, fs1.

Instruction format:

14.5.10 FCVT.S.D: an instruction that converts a double-precision floating-point num-
ber into a single-precision floating-point number

Syntax:

fcvt.s.d fd, fs1, rm

Operation:

fd ← double_convert_to_single(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.s.d
fd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.s.d fd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.s.d fd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.s.d fd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.s.d fd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

www.t-head.cn 227

Chapter 14. Appendix A Standard Instructions

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.s.d fd, fs1.

Instruction format:

14.5.11 FCVT.W.D: an instruction that converts a double-precision floating-point
number into a signed integer

Syntax:

fcvt.w.d rd, fs1, rm

Operation:

tmp ← double_convert_to_signed_int(fs1)

rd←sign_extend(tmp)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.w.d
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.w.d rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.w.d rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.w.d rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.w.d
rd, fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

www.t-head.cn 228

Chapter 14. Appendix A Standard Instructions

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.w.d rd, fs1.

Instruction format:

14.5.12 FCVT.WU.D: an instruction that converts a double-precision floating-point
number into an unsigned integer

Syntax:

fcvt.wu.d rd, fs1, rm

Operation:

tmp ← double_convert_to_unsigned_int(fs1)

rd←sign_extend(tmp)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.wu.d
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.wu.d rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.wu.d rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.wu.d rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.wu.d
rd, fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

www.t-head.cn 229

Chapter 14. Appendix A Standard Instructions

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.wu.d rd, fs1.

Instruction format:

14.5.13 FDIV.D: a double-precision floating-point divide instruction

Syntax:

fdiv.d fd, fs1, fs2, rm

Operation:

fd ← fs1 / fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, DZ, OF, UF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fdiv.d fd,
fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fdiv.d fd fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fdiv.d fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fdiv.d fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fdiv.d fd,
fs1, fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fdiv.d fd, fs1, fs2.

www.t-head.cn 230

Chapter 14. Appendix A Standard Instructions

Instruction format:

14.5.14 FEQ.D: a double-precision floating-point compare equal instruction

Syntax:

feq.d rd, fs1, fs2

Operation:

if(fs1 == fs2)

rd ← 1

else

rd ← 0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

14.5.15 FLD: a double-precision floating-point load instruction

Syntax:

fld fd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

fd[63:0] ← mem[(address+7):address]

Permission:

M mode/S mode/U mode

www.t-head.cn 231

Chapter 14. Appendix A Standard Instructions

Exception:

Unaligned access, access error, page error, or illegal instruction.

Affected flag bits:

None

Instruction format:

14.5.16 FLE.D: a double-precision floating-point compare less than or equal to instruc-
tion

Syntax:

fle.d rd, fs1, fs2

Operation:

if(fs1 <= fs2)

rd ← 1

else

rd ← 0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

14.5.17 FLT.D: a double-precision floating-point compare less than instruction

Syntax:

flt.d rd, fs1, fs2

Operation:

www.t-head.cn 232

Chapter 14. Appendix A Standard Instructions

if(fs1 < fs2)

rd ← 1

else

rd ← 0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

14.5.18 FMADD.D: a double-precision floating-point multiply-add instruction

Syntax:

fmadd.d fd, fs1, fs2, fs3, rm

Operation:

fd ← fs1*fs2 + fs3

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmadd.d
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmadd.d fd, fs1, fs2, fs3, rtz.

www.t-head.cn 233

Chapter 14. Appendix A Standard Instructions

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmadd.d fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmadd.d fd, fs1,
fs2, fs3, rdn.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmadd.d
fd, fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmadd.d fd, fs1, fs2, fs3.

Instruction format:

14.5.19 FMAX.D: a double-precision floating-point MAX instruction

Syntax:

fmax.d fd, fs1, fs2

Operation:

if(fs1 >= fs2)

fd ← fs1

else

fd ← fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

www.t-head.cn 234

Chapter 14. Appendix A Standard Instructions

14.5.20 FMIN.D: a double-precision floating-point MIN instruction

Syntax:

fmin.d fd, fs1, fs2

Operation:

if(fs1 >= fs2)

fd ← fs2

else

fd ← fs1

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

14.5.21 FMSUB.D: a double-precision floating-point multiply-subtract instruction

Syntax:

fmsub.d fd, fs1, fs2, fs3, rm

Operation:

fd ← fs1*fs2 - fs3

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

Notes:

www.t-head.cn 235

Chapter 14. Appendix A Standard Instructions

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmsub.d
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmsub.d fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmsub.d fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmsub.d fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmsub.d
fd, fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmsub.d fd, fs1, fs2, fs3.

Instruction format:

14.5.22 FMUL.D: a double-precision floating-point multiply instruction

Syntax:

fmul.d fd, fs1, fs2, rm

Operation:

fd ← fs1 * fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and NX

Notes:

RM determines the round-off mode:

www.t-head.cn 236

Chapter 14. Appendix A Standard Instructions

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmul.d
fd, fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmul.d fd, fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmul.d fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmul.d fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmul.d fd,
fs1, fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmul. fd, fs1, fs2.

Instruction format:

14.5.23 FMV.D.X: a double-precision floating-point write move instruction

Syntax:

fmv.d.x fd, rs1

Operation:

fd← rs1

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Notes:

This instruction moves data from an integer register to a floating-point register.

Instruction format:

www.t-head.cn 237

Chapter 14. Appendix A Standard Instructions

14.5.24 FMV.X.D: a double-precision floating-point read move instruction

Syntax:

fmv.x.d rd, fs1

Operation:

rd← fs1

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Notes:

This instruction moves data from a floating-point register to an integer register.

Instruction format:

14.5.25 FNMADD.D: a double-precision floating-point negate-(multiply-add) instruc-
tion

Syntax:

fnmadd.d fd, fs1, fs2, fs3, rm

Operation:

fd ←-(fs1*fs2 + fs3)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

www.t-head.cn 238

Chapter 14. Appendix A Standard Instructions

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fnmadd.d
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fnmadd.d fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fnmadd.d fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fnmadd.d fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fnmadd.d
fd, fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fnmadd.d fd,fs1, fs2, fs3.

Instruction format:

14.5.26 FNMSUB.D: a double-precision floating-point negate-(multiply-subtract) in-
struction

Syntax:

fnmsub.d fd, fs1, fs2, fs3, rm

Operation:

fd ← -(fs1*fs2 - fs3)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

www.t-head.cn 239

Chapter 14. Appendix A Standard Instructions

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fnmsub.d
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fnmsub.d fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fnmsub.d fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fnmsub.d fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fnmsub.d
fd, fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fnmsub.d fd,fs1, fs2, fs3.

Instruction format:

14.5.27 FSD: a double-precision floating-point store instruction

Syntax:

fsd fs2, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

mem[(address+63):address] ← fs2[63:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

www.t-head.cn 240

Chapter 14. Appendix A Standard Instructions

14.5.28 FSGNJ.D: a double-precision floating-point sign-injection instruction

Syntax:

fsgnj.d fd, fs1, fs2

Operation:

fd[62:0] ← fs1[62:0]

fd[63] ← fs2[63]

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

14.5.29 FSGNJN.D: a double-precision floating-point negate sign-injection instruction

Syntax:

fsgnjn.d fd, fs1, fs2

Operation:

fd[62:0] ← fs1[62:0]

fd[63] ← !fs2[63]

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

www.t-head.cn 241

Chapter 14. Appendix A Standard Instructions

14.5.30 FSGNJX.D: a double-precision floating-point XOR sign-injection instruction

Syntax:

fsgnjx.d fd, fs1, fs2

Operation:

fd[62:0] ← fs1[62:0]

fd[63] ← fs1[63] ^ fs2[63]

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

14.5.31 FSQRT.D: a double-precision floating-point square-root instruction

Syntax:

fsqrt.d fd, fs1, rm

Operation:

fd ← sqrt(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

www.t-head.cn 242

Chapter 14. Appendix A Standard Instructions

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fsqrt.d
fd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fsqrt.d fd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fsqrt.d fd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fsqrt.d fd, fs1, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fsqrt.d fd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fsqrt.d fd, fs1.

Instruction format:

14.5.32 FSUB.D: a double-precision floating-point subtract instruction

Syntax:

fsub.d fd, fs1, fs2, rm

Operation:

fd ← fs1 - fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fsub.fd,
fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fsub.d fd, fs1, fs2, rtz.

www.t-head.cn 243

Chapter 14. Appendix A Standard Instructions

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fsub.d fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fsub.d fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fsub.d fd,
fs1, fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fsub.dfd, fs1, fs2.

Instruction format:

14.6 Appendix A-6 C Instructions

This section describes RISC-V C instructions implemented by C910. The instructions are 16 bits wide and
sorted in alphabetic order.

14.6.1 C.ADD: a signed add instruction

Syntax:

c.add rd, rs2

Operation:

rd ← rs1 + rs2

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 = rd != 0

rs2 ! = 0

Instruction format:

www.t-head.cn 244

Chapter 14. Appendix A Standard Instructions

14.6.2 C.ADDI: a signed add immediate instruction

Syntax:

c.addi rd, nzimm6

Operation:

rd ← rs1 + sign_extend(nzimm6)

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 = rd != 0

nzimm6!=0

Instruction format:

14.6.3 C.ADDIW: an add immediate instruction that operates on the lower 32 bits

Syntax:

c.addiw rd, imm6

Operation:

tmp[31:0] ← rs1[31:0] + sign_extend(imm6)

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

www.t-head.cn 245

Chapter 14. Appendix A Standard Instructions

Notes:

rs1 = rd != 0

Instruction format:

14.6.4 C.ADDI4SPN: an instruction that adds an immediate scaled by 4 to the stack
pointer

Syntax:

c.addi4spn rd, sp, nzuimm8<<2

Operation:

rd ← sp + zero_extend(nzuimm8<<2)

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

nzuimm8 != 0

Typical rd code registers are:

• 000 x8

• 001 x9

• 010 x10

• 011 x11

• 100 x12

• 101 x13

• 110 x14

• 111 x15

Instruction format:

www.t-head.cn 246

Chapter 14. Appendix A Standard Instructions

14.6.5 C.ADDI16SP: an instruction that adds an immediate scaled by 16 to the stack
pointer

Syntax:

c.addi16sp sp, nzuimm6<<4

Operation:

sp ← sp + sign_extend(nzuimm6<<4)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.6.6 C.ADDW: a signed add instruction that operates on the lower 32 bits

Syntax:

c.addw rd, rs2

Operation:

tmp[31:0] ← rs1[31:0] + rs2[31:0]

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 = rd

Typical rd/rs1 and rs2 code registers are:

• 000: x8

• 001: x9

www.t-head.cn 247

Chapter 14. Appendix A Standard Instructions

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

14.6.7 C.AND: a bitwise AND instruction

Syntax:

c.and rd, rs2

Operation:

rd ← rs1 & rs2

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 = rd

Typical rd/rs1 and rs2 code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

www.t-head.cn 248

Chapter 14. Appendix A Standard Instructions

Instruction format:

14.6.8 C.ANDI: an immediate bitwise AND instruction

Syntax:

c.andi rd, imm6

Operation:

rd ← rs1 & sign_extend(imm6)

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 = rd

Typical rd/rs1 code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

www.t-head.cn 249

Chapter 14. Appendix A Standard Instructions

14.6.9 C.BEQZ: a branch-if-equal-to-zero instruction

Syntax:

c.beqz rs1, label

Operation:

if (rs1 == 0)

next pc = current pc + imm8<<1;

else

next pc = current pc + 2;

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

Typical rs1 code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

The compiler calculates immediate 8 based on the label.

The jump range of the instruction is ±256 B address space.

Instruction format:

www.t-head.cn 250

Chapter 14. Appendix A Standard Instructions

14.6.10 C.BNEZ: a branch-if-not-equal-to-zero instruction

Syntax:

c.bnez rs1, label

Operation:

if (rs1 != 0)

next pc = current pc + imm8<<1;

else

next pc = current pc + 2;

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

Typical rs1 code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

The compiler calculates immediate 12 based on the label.

The jump range of the instruction is ±256 B address space.

Instruction format:

www.t-head.cn 251

Chapter 14. Appendix A Standard Instructions

14.6.11 C.EBREAK: a break instruction

Syntax:

c.ebreak

Operation:

Generates breakpoint exceptions or enables the core to enter the debug mode.

Permission:

M mode/S mode/U mode

Exception:

Breakpoint exceptions

Instruction format:

14.6.12 C.FLD: a floating-point load doubleword instruction

Syntax:

c.fld fd, uimm5<<3(rs1)

Operation:

address ← rs1+ zero_extend(uimm5<<3)

fd ←mem[address+7:address]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Notes:

Typical rs1 code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

www.t-head.cn 252

Chapter 14. Appendix A Standard Instructions

• 101: x13

• 110: x14

• 111: x15

Typical fd code registers are:

• 000: f8

• 001: f9

• 010: f10

• 011: f11

• 100: f12

• 101: f13

• 110: f14

• 111: f15

Instruction format:

14.6.13 C.FLDSP: a floating-point doubleword load stack instruction

Syntax:

c.fldsp fd, uimm6<<3(sp)

Operation:

address ← sp+ zero_extend(uimm6<<3)

fd ←mem[address+7:address]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

www.t-head.cn 253

Chapter 14. Appendix A Standard Instructions

14.6.14 C.FSD: a floating-point store doubleword instruction

Syntax:

c.fsd fs2，uimm5<<3(rs1)

Operation:

address ← rs1+ zero_extend(uimm5<<3)

mem[address+7:address] ←fs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Notes:

Typical fs1 code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Typical rs2 code registers are:

• 000: f8

• 001: f9

• 010: f10

• 011: f11

• 100: f12

www.t-head.cn 254

Chapter 14. Appendix A Standard Instructions

• 101: f13

• 110: f14

• 111: f15

Instruction format:

14.6.15 C.FSDSP: a floating-point store doubleword stack pointer instruction

Syntax:

c.fsdsp fs2, uimm6<<3(sp)

Operation:

address ← sp+ zero_extend(uimm6<<3)

mem[address+7:address] ←fs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Instruction format:

14.6.16 C.J: a unconditional jump instruction

Syntax:

c.j label

Operation:

next pc ← current pc + sign_extend(imm<<1);

Permission:

M mode/S mode/U mode

www.t-head.cn 255

Chapter 14. Appendix A Standard Instructions

Exception:

None

Notes:

The compiler calculates immediate 11 based on the label.

The jump range of the instruction is ±2 KB address space.

Instruction format:

14.6.17 C.JALR: a jump and link register instruction

Syntax:

c.jalr rs1

Operation:

next pc ← rs1;

x1←current pc + 2;

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 != 0。

When MMU is enabled, the jump range is the entire 512 GB address space.

When MMU is disabled, the jump range is the entire 1 TB address space.

Instruction format:

14.6.18 C.JR: a jump register instruction

Syntax:

c.jr rs1

www.t-head.cn 256

Chapter 14. Appendix A Standard Instructions

Operation:

next pc = rs1;

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 != 0。

When MMU is enabled, the jump range is the entire 512 GB address space.

When MMU is disabled, the jump range is the entire 1 TB address space.

Instruction format:

14.6.19 C.LD: a load doubleword instruction

Syntax:

c.ld rd, uimm5<<3(rs1)

Operation:

address ← rs1+ zero_extend(uimm5<<3)

rd ←mem[address+7:address]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Notes:

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

www.t-head.cn 257

Chapter 14. Appendix A Standard Instructions

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

14.6.20 C.LDSP: a load doubleword instruction

Syntax:

c.ldsp rd, uimm6<<3(sp)

Operation:

address ← sp+ zero_extend(uimm6<<3)

rd ←mem[address+7:address]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Notes:

rd != 0

Instruction format:

14.6.21 C.LI: a load immediate instruction

Syntax:

c.li rd, imm6

Operation:

www.t-head.cn 258

Chapter 14. Appendix A Standard Instructions

rd ←sign_extend(imm6)

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rd != 0

Instruction format:

14.6.22 C.LUI: a load upper immediate instruction

Syntax:

c.lui rd, nzimm6

Operation:

rd ←sign_extend(nzimm6<<12)

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rd != 0。

Nzimm6 != 0。

Instruction format:

www.t-head.cn 259

Chapter 14. Appendix A Standard Instructions

14.6.23 C.LW: a load word instruction

Syntax:

c.lw rd, uimm5<<2(rs1)

Operation:

address ← rs1+ zero_extend(uimm5<<2)

tmp[31:0] ←mem[address+3:address]

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Notes:

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

14.6.24 C.LWSP: a load word stack pointer instruction

Syntax:

c.lwsp rd, uimm6<<2(sp)

Operation:

www.t-head.cn 260

Chapter 14. Appendix A Standard Instructions

address ← sp+ zero_extend(uimm6<<2)

tmp[31:0] ←mem[address+3:address]

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Notes:

rd != 0

Instruction format:

14.6.25 C.MV: an instruction that copies the value in rs to rd

Syntax:

c.mv rd, rs2

Operation:

rd ← rs2;

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs2 != 0, rd !=0。

Instruction format:

www.t-head.cn 261

Chapter 14. Appendix A Standard Instructions

14.6.26 C.NOP: a no-operation instruction

Syntax:

c.nop

Operation:

No operations

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

14.6.27 C.OR: a bitwise OR instruction

Syntax:

c.or rd, rs2

Operation:

rd ← rs1 | rs2

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 = rd

Typical rd/rs1 code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

www.t-head.cn 262

Chapter 14. Appendix A Standard Instructions

• 101: x13

• 110: x14

• 111: x15

Instruction format:

14.6.28 C.SD: a store doubleword instruction

Syntax:

c.sd rs2, uimm5<<3(rs1)

Operation:

address ← rs1+ zero_extend(uimm5<<3)

mem[address+7:address] ←rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Notes:

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

www.t-head.cn 263

Chapter 14. Appendix A Standard Instructions

14.6.29 C.SDSP: a store doubleword stack pointer instruction

Syntax:

c.fsdsp rs2, uimm6<<3(sp)

Operation:

address ← sp+ zero_extend(uimm6<<3)

mem[address+7:address] ←rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Instruction format:

14.6.30 C.SLLI: an immediate logical left shift instruction

Syntax:

c.slli rd, nzuimm6

Operation:

rd ←rs1 << nzuimm6

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1==rd

rd/rs1 != 0，nzuimm6 != 0

www.t-head.cn 264

Chapter 14. Appendix A Standard Instructions

Instruction format:

14.6.31 C.SRAI: a right shift arithmetic immediate instruction

Syntax:

c.srli rd, nzuimm6

Operation:

rd ←rs1 >>>nzuimm6

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

nzuimm6 != 0

rs1 == rd

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

www.t-head.cn 265

Chapter 14. Appendix A Standard Instructions

14.6.32 C.SRLI: an immediate right shift instruction

Syntax:

c.srli rd, nzuimm6

Operation:

rd ←rs1 >> nzuimm6

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

nzuimm6 != 0

rs1 == rd

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

14.6.33 C.SW: a store word instruction

Syntax:

c.sw rs2, uimm5<<2(rs1)

Operation:

www.t-head.cn 266

Chapter 14. Appendix A Standard Instructions

address ← rs1+ zero_extend(uimm5<<2)

mem[address+3:address] ←rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Notes:

Typical rs1/rs2 code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

14.6.34 C.SWSP: a store word stack pointer instruction

Syntax:

c.swsp rs2, uimm6<<2(sp)

Operation:

address ← sp+ zero_extend(uimm6<<2)

mem[address+3:address] ←rs2

Permission:

M mode/S mode/U mode

www.t-head.cn 267

Chapter 14. Appendix A Standard Instructions

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Instruction format:

14.6.35 C.SUB: a signed subtract instruction

Syntax:

c.sub rd, rs2

Operation:

rd ← rs1 - rs2

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 == rd

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

www.t-head.cn 268

Chapter 14. Appendix A Standard Instructions

14.6.36 C.SUBW: a signed subtract instruction that operates on the lower 32 bits

Syntax:

c.subw rd, rs2

Operation:

tmp[31:0] ← rs1[31:0] - rs2[31:0]

rd ←sign_extend(tmp)

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 == rd

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

14.6.37 C.XOR: a bitwise XOR instruction

Syntax:

c.xor rd, rs2

Operation:

rd ← rs1 ^ rs2

www.t-head.cn 269

Chapter 14. Appendix A Standard Instructions

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 == rd

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

14.7 Appendix A-8 Pseudo instructions

RISC-V implements a series of pseudo instructions. The instructions listed in this section are for reference
only and are sorted in alphabetic order.

Pseudo instruction Base instruction Meaning
beqz rs, offset beq rs, x0, offset Takes the branch if rs is zero.
bnez rs, offset bne rs, x0, offset Takes the branch if rs is not zero.
blez rs, offset bge x0,rs, offset Takes the branch if rs is less than

or equal to zero.
bgez rs, offset bge rs, x0, offset Takes the branch if rs is greater

than or equal to zero.
bltz rs, offset blt rs, x0, offset Takes the branch if rs is less than

zero.
Continued on next page

www.t-head.cn 270

Chapter 14. Appendix A Standard Instructions

Table 14.1 – continued from previous page
Pseudo instruction Base instruction Meaning
bgtz rs, offset blt x0, xs, offset Takes the branch if rs is greater

than zero.
bgt rs, rt, offset blt rt, rs, offset Takes the branch if rs is greater

than rt.
ble rs, rt, offset bge rt, rs, offset Takes the branch if rs is less than

or equal to rt.
bgtu rs, rt, offset bltu rt, rs, offset Takes the branch if rs is greater

than rt, using unsigned compari-
son.

bleu rs, rt, offset bgeu rt, rs, offset Takes the branch if rs is less than
or equal to rt, using unsigned
comparison.

call offset auipc x6, offset[31:12]
jalr x1, x6, offset[11:0]

Calls far-away subroutine.

csrc csr, rs csrrc x0, csr, rs Clears bits in the control/status
register (CSR).

csrci csr, imm csrrci x0, csr, imm Clears bits in the CSR, immedi-
ate.

csrs csr, rs csrrs x0, csr, rs Sets bits in the CSR.
csrsi csr, imm csrrsi x0, csr, imm Sets bits in the CSR, immediate
csrw csr, rs csrrw x0, csr, rs Writes the CSR.
csrwi csr, imm csrrwi x0, csr, imm Writes the CSR, immediate.
fabs.d rd, rs fsgnjx.d rd, rs, rs Calculates the double-precision

floating point (FP) absolute
value.

fabs.s rd, rs fsgnjx.s rd, rs, rs Calculates the single-precision
FP absolute value.

fence fence iorw, iorw Fences on all memory and I/O.
fl{w|d} rd, symbol, rt auipc rt, symbol[31:12]

fl{w|d} rd, symbol[11:0](rt)
An FP load global instruction.

fmv.d rd, rs fsgnj.d rd, rs, rs A double-precision FP copy in-
struction.

fmv.s rd, rs fsgnj.s rd, rs, rs A single-precision FP copy in-
struction.

fneg.d rd, rs fsgnjn.d rd, rs, rs A double-precision FP negate in-
struction.

fneg.s rd, rs fsgnjn.s rd, rs, rs A single-precision FP negate in-
struction.

Continued on next page

www.t-head.cn 271

Chapter 14. Appendix A Standard Instructions

Table 14.1 – continued from previous page
Pseudo instruction Base instruction Meaning
frcsr rd csrrs x0, fcsr, x0 Reads FP CSR.
frflags rd csrrs rd, fflags, x0 Reads FP exception flags.
frrm rd csrrs rd, frm, x0 Reads FP rounding mode.
fscsr rs csrrw x0, fcsr, rs Writes FP CSR.
fscsr rd, rs csrrs rd, fcsr, rs Swaps FP CSR.
fsflags rs csrrw x0, fcsr, rs Writes FP exception flags.
fsflags rd, rs csrrs rd, fcsr, rs Swaps FP exception flags.
fsflagsi imm csrrwi x0, fflags, imm Writes FP exception flags, imme-

diate.
fsflagsi rd, imm csrrwi rd, fflags, imm Swaps FP exception flags, imme-

diate.
fsrm rs csrrw x0, frm, rs Writes FP rounding mode.
fsrm rd, rs csrrs rd, frm, rs Swaps FP rounding mode.
fsrmi imm csrrwi x0, frm, imm Writes FP rounding mode, imme-

diate.
fsrmi rd, imm csrrwi rd, frm, imm Swaps FP rounding mode, imme-

diate.
fs{w|d} rd, symbol,rt auipc rt,symbol[31:12]

fs{w|d} rd, symbol[11:0](rt)
An FP store global instruction.

j offset jal x0, offset A jump instruction.
jal offset jal x1, offset Jumps to subroutine and link.
jalr rs jalr x1, rs, 0 Jumps to subroutine and links

register.
jr rs jalr x0, rs, 0 A jump register instruction.
la rd, symbol auipc rd, symbol[31:12]

addi rd, rd, symbol[11:0]
A load address instruction.

li rd, immediate Split into multiple instructions
based on the size of the immedi-
ate

A load immediate instruction

l{b|h|w|d} rd,symbol, rt auipc rt,| symbol[31:12]
l{b|h|w|d} rd,symbol[11:0](rt)

A load global instruction.

mv rd, rs addi rd, rs, 0 A instruction that copies the
value in rs to rd.

neg rd, rs sub rd, x0, rs A register negate instruction.
negw rd, rs subw rd, x0, rs Negates the lower 32 bits of reg-

isters.
nop addi x0,x0,0 A no operation instruction.
not rd, rs xori rd, rs, -1 A register NOT instruction.

Continued on next page

www.t-head.cn 272

Chapter 14. Appendix A Standard Instructions

Table 14.1 – continued from previous page
Pseudo instruction Base instruction Meaning
rdcycle[h] rd csrrs rd, cycle[h], x0 A read cycle counter instruction.
rdinstret[h] rd csrrs rd, instret[h], x0 Reads instructions-retired

counter.
rdtime[h] rd csrrs rd, time[h], x0 Reads real-time clock.
ret jalr x0, x1,0 Returns from subroutine.
s{b|h|w|d} rd, symbol, rt auipc rt,symbol[31:12]

s{b|h|w|d} rd,symbol[11:0](rt)
A store global instruction.

seqz rd, rs sltiu rd, rs, 1 Sets 0 in registers to 1.
sextw rd, rs addiw rd, rs, 0 A sign extend word instruction.
sgtz rd, rs slt rd, rs, x0, rs Sets rd to 1 if rs is greater than

zero.
sltz rd, rs slt rd, rs, rs, x0 Sets rd to 1 if rs is less than zero.
snez rd, rs sltu rd, rs, x0, rs Sets rd to 1 if rs is not equal to

zero.
tail offset auipc x6,offset[31:12]

jalr x0, x6,offset[11:0]
Tail call far-away subroutine.

www.t-head.cn 273

CHAPTER 15

Appendix B T-Head Extended Instructions

Apart from the GC instruction sets defined in the standard, C910 provides custom instruction sets, includ-
ing the cache instruction set, synchronization instruction set, arithmetic operation instruction set, bitwise
operation instruction set, storage instruction set, and half-precision floating-point instruction set.

Among these instruction sets, the cache instructions, synchronization instructions, arithmetic operation
instructions, bitwise operation instructions, and storage instructions can be executed only when the value
of mxstatus.theadisaee is 1. Otherwise, an instruction exception will occur. Half-precision floating-point
instructions can be executed only when the value of mstatus.fs ! is 2’b00. Otherwise, an illegal instruction
exception will occur. The following describes each instruction in these instruction sets.

15.1 Appendix B-1 Cache instructions

You can use the cache instruction set to manage caches. Each instruction has 32 bits.

Arithmetic operation instructions in this instruction set are described in alphabetical order.

15.1.1 DCACHE.CALL: an instruction that clears all dirty page table entries in the
D-Cache

Syntax:

dcache.call

Operation:

274

Chapter 15. Appendix B T-Head Extended Instructions

Clears all page table entries in the L1 D-Cache and writes all dirty page table entries back into the
next-level storage. You can perform this operation only on the current core.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruc-
tion.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

15.1.2 DCACHE.CIALL: an instruction that clears all dirty page table entries in the
D-Cache and invalidates the D-Cache

Syntax:

dcache.ciall

Operation:

Writes all dirty page table entries in the L1 D-Cache back into the next-level storage and invalidates all
these page table entries.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruc-
tion.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

www.t-head.cn 275

Chapter 15. Appendix B T-Head Extended Instructions

15.1.3 DCACHE.CIPA: clears dirty page table entries that match the specified physical
addresses from the D-Cache and invalidates the the D-Cache

Syntax:

dcache.cipa rs1

Operation:

Writes page table entries that match the specified physical addresses of the D-Cache or L2 Cache of rs1
back into the next-level storage and invalidates these page table entries. You can perform this operation on
all cores and the L2 Cache.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruc-
tion.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

15.1.4 DCACHE.CISW: an instruction that clears dirty page table entries in the D-
Cache based on the specified way and set and invalidates the D-Cache

Syntax:

dcache.cisw rs1

Operation:

Writes the dirty page table entry that matches the specified way and set from the L1 Cache of rs1 back
into the next-level storage and invalidates this page table entry. You can perform this operation only on the
current core.

www.t-head.cn 276

Chapter 15. Appendix B T-Head Extended Instructions

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

C910 D-Cache is a 2-way set-associative cache. rs1[31] specifies the way and rs1[s:6] specifies the set.
When the size of the D-Cache is 32 KB, w denotes 13. When the size of the D-Cache is 64 KB, w denotes
14, and so forth.

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

15.1.5 DCACHE.CIVA: an instruction that clears dirty page table entries that match
the specified virtual addresses in the D-Cache and invalidates the D-Cache

Syntax:

dcache.civa rs1

Operation:

Writes the page table entry that matches the specified virtual address from the D-Cache or L2 Cache
of rs1 back into the next-level storage and invalidates this page table entry. You can perform this operation
on the current core and the L2 Cache. The sharing attribute of the virtual address determines whether you
can perform this operation on other cores.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction or error page during instruction loading.

Notes:

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

www.t-head.cn 277

Chapter 15. Appendix B T-Head Extended Instructions

• If the value of mxstatus.theadisaee is 1 and the value of mxstatus.ucme is 1, this instruction can be
executed in U mode.

• If the value of mxstatus.theadisaee is 1 and the value of mxstatus.ucme is 0, executing this instruction
in U mode causes an exception of illegal instruction.

Instruction format:

15.1.6 DCACHE.CPA: an instruction that clears dirty page table entries that match
the specified physical addresses from the D-Cache

Syntax:

dcache.cpa rs1

Operation:

Writes the page table entry that matches the specified physical address from the D-Cache or L2
Cache of rs1 back into the next-level storage. You can perform this operation on all cores and
the L2 Cache.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal
instruction.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception
of illegal instruction.

Instruction format:

15.1.7 DCACHE.CPAL1: an instruction that clears dirty page table entries that match
the specified physical addresses from the L1 D-Cache

Syntax:

dcache.cpal1 rs1

www.t-head.cn 278

Chapter 15. Appendix B T-Head Extended Instructions

Operation: Writes the page table entry that matches the specified physical address from the D-Cache of
rs1 back into the next-level storage. You can perform this operation on all cores and the L1 Cache.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal
instruction.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception
of illegal instruction.

Instruction format:

15.1.8 DCACHE.CVA: an instruction that clears dirty page table entries that match
the specified virtual addresses in the D-Cache

Syntax:

dcache.cva rs1

Operation:

Writes the page table entry that matches the specified virtual address from the D-Cache or L2
Cache of rs1 back into the next-level storage. You can perform this operation on the current
core and the L2 Cache. The sharing attribute of the virtual address determines whether you can
perform this operation on other cores.

Permission:

M mode/S mode

Exception:

Illegal instruction or error page during instruction loading.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal
instruction.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception
of illegal instruction.

www.t-head.cn 279

Chapter 15. Appendix B T-Head Extended Instructions

Instruction format:

15.1.9 DCACHE.CVAL1: an instruction that clears dirty page table entries that match
the specified virtual addresses in the L1 D-Cache

Syntax:

dcache.cval1 rs1

Operation:

Writes the page table entry that matches the specified virtual address from the D-Cache of s1 back into
the next-level storage. You can perform this operation on all cores and the L1 Cache.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction or error page during instruction loading.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruc-
tion.

If the value of mxstatus.theadisaee is 1 and the value of mxstatus.ucme is 0, executing this
instruction in U mode causes an exception of illegal instruction.

Instruction format:

15.1.10 DCACHE.IPA: an instruction that invalidates page table entries that match
the specified physical addresses in the D-Cache

Syntax:

dcache.ipa rs1

Operation:

Invalidates the page table entry that matches the specified physical address in the D-Cache or L2 Cache
of rs1. You can perform this operation on all cores and the L2 Cache.

Permission:

www.t-head.cn 280

Chapter 15. Appendix B T-Head Extended Instructions

M mode/S mode

Exception:

Illegal instruction.

Notes:

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

15.1.11 DCACHE.ISW: an instruction that invalidates page table entries in the D-
Cache based on the specified way and set and invalidates the D-Cache

Syntax:

dcache.isw rs1

Operation:

Invalidates the page table entry in the D-Cache based on the specified set and way. You can perform
this operation only on the current core.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

C910 D-Cache is a 2-way set-associative cache. rs1[31] specifies the way and rs1[s:6] specifies the set.
When the size of the D-Cache is 32 KB, w denotes 13. When the size of the D-Cache is 64 KB, w denotes
14, and so forth.

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

www.t-head.cn 281

Chapter 15. Appendix B T-Head Extended Instructions

15.1.12 DCACHE.IVA: an instruction that invalidates the D-Cache based on the spec-
ified virtual address

Syntax:

dcache.iva rs1

Operation:

Invalidates the page table entry that matches the specified virtual address from the D-Cache or L2
Cache of rs1. You can perform this operation on the current core and the L2 Cache. The sharing attribute
of the virtual address determines whether you can perform this operation on other cores.

Permission:

M mode/S mode

Exception:

Illegal instruction or error page during instruction loading.

Notes:

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

15.1.13 DCACHE.IALL: an instruction that invalidates all page table entries in the
D-Cache.

Syntax:

dcache.iall

Operation:

Invalidates all page table entries in the L1 Cache. You can perform this operation only on the current
core.

Permission:

www.t-head.cn 282

Chapter 15. Appendix B T-Head Extended Instructions

M mode/S mode

Exception:

Illegal instruction.

Notes:

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

15.1.14 ICACHE.IALL: an instruction that invalidates all page table entries in the
I-Cache

Syntax:

icache.iall

Operation:

Invalidates all page table entries in the I-Cache. You can perform this operation only on the current
core.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruc-
tion.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

www.t-head.cn 283

Chapter 15. Appendix B T-Head Extended Instructions

15.1.15 ICACHE.IALLS: an instruction that invalidates all page table entries in the
I-Cache through broadcasting

Syntax:

icache.ialls

Operation:

Invalidates all page table entries in the I-Cache and invalidates all page table entries in the I-Cache of
other cores through broadcasting. You can perform this operation on all cores.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruc-
tion.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

15.1.16 ICACHE.IPA: an instruction that invalidates page table entries that match
the specified physical addresses in the I-Cache

Syntax:

icache.ipa rs1

Operation:

Invalidates the page table entry that matches the specified physical address in the I-Cache of rs1. You
can perform this operation on all cores.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

www.t-head.cn 284

Chapter 15. Appendix B T-Head Extended Instructions

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruc-
tion.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

15.1.17 ICACHE.IVA: an instruction that invalidates page table entries that match
the specified virtual addresses in the I-Cache

Syntax:

icache.iva rs1

Operation:

Invalidates the page table entry that matches the specified virtual address in the I-Cache of rs1. You
can perform this operation only on the current core. The sharing attribute of the virtual address determines
whether you can perform this operation on other cores.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction or error page during instruction loading.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruc-
tion.

If the value of mxstatus.theadisaee is 1 and the value of mxstatus.ucme is 1, this instruction can be
executed in U mode.

If the value of mxstatus.theadisaee is 1 and the value of mxstatus.ucme is 0, executing this instruction
in U mode causes an exception of illegal instruction.

Instruction format:

www.t-head.cn 285

Chapter 15. Appendix B T-Head Extended Instructions

15.1.18 L2CACHE.CALL: an instruction that clears all dirty page table entries in the
L2 Cache

Syntax:

l2cache.call

Operation:

Writes all dirty page table entries from the L2 Cache back into the next-level storage.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

15.1.19 L2CACHE.CIALL: an instruction that clears all dirty page table entries in the
L2 Cache and invalidates the L2 Cache

Syntax:

l2cache.ciall

Operation:

Writes all dirty page table entries from the L2 Cache back into the next-level storage and invalidates all
page table entries in the L2 Cache.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

www.t-head.cn 286

Chapter 15. Appendix B T-Head Extended Instructions

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

15.1.20 L2CACHE.IALL: an instruction that invalidates the L2 Cache

Syntax:

l2cache.iall

Operation:

Invalidates all page table entries in the L2 Cache.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

• If the value of mxstatus.cskisayee is 0, executing this instruction causes an exception of illegal instruc-
tion.

• If the value of mxstatus.cskisayee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

15.1.21 DCACHE.CSW: an instruction that clears dirty page table entries in the D-
Cache based on the specified set and way

Syntax:

dcache.csw rs1

Operation:

www.t-head.cn 287

Chapter 15. Appendix B T-Head Extended Instructions

Writes the dirty page table entry from the D-Cache back into the next-level storage device based on the
specified set and way.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

C910 D-Cache is a 2-way set-associative cache. rs1[31] specifies the way and rs1[s:6] specifies the set.
When the size of the D-Cache is 32 KB, w denotes 13. When the size of the D-Cache is 64 KB, w denotes
14, and so forth.

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruc-
tion.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

Fig. 15.1: DCACHE.CSW

15.2 Appendix B-2 Multi-core synchronization instructions

This synchronization instruction set extends multi-core synchronization instructions. Each instruction has
32 bits. Synchronization instructions in this instruction set are described in alphabetical order.

15.2.1 SFENCE.VMAS: a broadcast instruction that synchronizes the virtual memory
address

Syntax:

sfence.vmas rs1,rs2

www.t-head.cn 288

Chapter 15. Appendix B T-Head Extended Instructions

Operation:

Invalidates and synchronizes page table entries in the virtual memory and broadcasts them to other
cores in the cluster.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

rs1 is the virtual address, and rs2 is the address space identifier (ASID).

• If the value of rs1 is x0 and the value of rs2 is x0, invalidate all page table entries in the TLB and
broadcast them to other cores in the cluster.

• When rs1! and rs2 are both x0, all TLB entries that hit the virtual address specified by rs1 are
invalidated and broadcast to other cores in the cluster.

• When rs1 and rs2! are both x0, all TLB entries that hit the process ID specified by rs2 are invalidated
and broadcast to other cores in the cluster.

• When rs1! and rs2! are both x0, all TLB entries that hit the virtual address specified by rs1 and the
process ID specified by rs2 are invalidated and broadcast to other cores in the cluster.

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruc-
tion.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

15.2.2 SYNC: an instruction that performs the synchronization operation

Syntax:

sync

Operation:

Ensures that all preceding instructions retire earlier than this instruction and all subsequent instructions
retire later than this instruction.

Permission:

M mode/S mode/U mode

www.t-head.cn 289

Chapter 15. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Instruction format:

15.2.3 SYNC.I: an instruction that synchronizes the clearing operation.

Syntax:

sync.i

Operation:

Ensures that all preceding instructions retire earlier than this instruction and all subsequent instructions
retire later than this instruction, and clears the pipeline when this instruction retires.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.2.4 SYNC.IS: a broadcast instruction that synchronizes the clearing operation

Syntax:

sync.is

Operation:

Ensures that all preceding instructions retire earlier than this instruction and all subsequent instructions
retire later than this instruction. Clears the pipeline when this instruction retires and broadcasts the request
to other cores.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

www.t-head.cn 290

Chapter 15. Appendix B T-Head Extended Instructions

15.2.5 SYNC.S: a broadcast instruction that performs a synchronization operation

Syntax:

sync.s

Operation:

Ensures that all preceding instructions retire earlier than this instruction and all subsequent instructions
retire later than this instruction, and broadcasts the request to other cores.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.3 Appendix B-3 Arithmetic operation instructions

The arithmetic operation instruction set extends arithmetic operation instructions. Each instruction has 32
bits.

Arithmetic operation instructions in this instruction set are described in alphabetical order.

15.3.1 ADDSL: an add register instruction that shifts registers

Syntax:

addsl rd rs1, rs2, imm2

Operation:

rd ← rs1+ rs2<<imm2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

www.t-head.cn 291

Chapter 15. Appendix B T-Head Extended Instructions

Instruction format:

15.3.2 MULA: a multiply-add instruction

Syntax:

mula rd, rs1, rs2

Operation:

rd ← rd+ (rs1 * rs2)[63:0]

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.3.3 MULAH: a multiply-add instruction that operates on the lower 16 bits

Syntax:

mulah rd, rs1, rs2

Operation:

tmp[31:0] ← rd[31:0]+ (rs1[15:0] * rs[15:0])

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

www.t-head.cn 292

Chapter 15. Appendix B T-Head Extended Instructions

15.3.4 MULAW: a multiply-add instruction that operates on the lower 32 bits

Syntax:

mulaw rd, rs1, rs2

Operation:

tmp[31:0] ← rd[31:0]+ (rs1[31:0] * rs[31:0])[31:0]

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.3.5 MULS: a multiply-subtract instruction

Syntax:

muls rd, rs1, rs2

Operation:

rd ← rd- (rs1 * rs2)[63:0]

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.3.6 MULSH: a multiply-subtract instruction that operates on the lower 16 bits

Syntax:

mulsh rd, rs1, rs2

www.t-head.cn 293

Chapter 15. Appendix B T-Head Extended Instructions

Operation:

tmp[31:0] ← rd[31:0]- (rs1[15:0] * rs[15:0])

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.3.7 MULSW: a multiply-subtract instruction that operates on the lower 32 bits

Syntax:

mulaw rd, rs1, rs2

Operation:

tmp[31:0] ← rd[31:0]- (rs1[31:0] * rs[31:0])

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.3.8 MVEQZ: an instruction that sends a message when the register is 0

Syntax:

mveqz rd, rs1, rs2

Operation: if (rs2 == 0)

rd ← rs1

else

www.t-head.cn 294

Chapter 15. Appendix B T-Head Extended Instructions

rd ← rd

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.3.9 MVNEZ: an instruction that sends a message when the register is not 0

Syntax:

mvnez rd, rs1, rs2

Operation:

if (rs2 != 0)

rd ← rs1

else

rd ← rd

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.3.10 SRRI: an instruction that implements a cyclic right shift operation on a linked
list

Syntax:

srri rd, rs1, imm6

Operation:

rd ← rs1 >>>> imm6

www.t-head.cn 295

Chapter 15. Appendix B T-Head Extended Instructions

Shifts the original value of rs1 to the right, disconnects the last value on the list, and re-attaches the
value to the start of the linked list.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.3.11 SRRIW: an instruction that implements a cyclic right shift operation on a
linked list of low 32 bits of registers.

Syntax:

srriw rd, rs1, imm5

Operation:

rd ← sign_extend(rs1[31:0] >>>> imm5)

Shifts the original value of rs1[31:0] to the right, disconnects the last value on the list, and re-attaches
the value to the start of the linked list.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.4 Appendix B-4 Bitwise operation instructions

The bitwise operation instruction set extends bitwise operation instructions. Each instruction has 32 bits.

Arithmetic operation instructions in this instruction set are described in alphabetical order.

www.t-head.cn 296

Chapter 15. Appendix B T-Head Extended Instructions

15.4.1 EXT: a signed extension instruction that extracts consecutive bits of a register

Syntax:

ext rd, rs1, imm1,imm2

Operation:

rd←sign_extend(rs1[imm1:imm2])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

If imm1 is smaller than imm2, the action of this instruction is not predictable.

Instruction format:

15.4.2 EXTU: a zero extension instruction that extracts consecutive bits of a register

Syntax:

extu rd, rs1, imm1,imm2

Operation:

rd←zero_extend(rs1[imm1:imm2])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

If imm1 is smaller than imm2, the action of this instruction is not predictable.

Instruction format:

www.t-head.cn 297

Chapter 15. Appendix B T-Head Extended Instructions

15.4.3 FF0: an instruction that finds the first bit with the value of 0 in a register

Syntax:

ff0 rd, rs1

Operation:

Finds the first bit with the value of 0 from the highest bit of rs1 and writes the result back into the rd
register. If the highest bit of rs1 is 0, the result 0 is returned. If all the bits in rs1 are 1, the result 64 is
returned.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.4.4 FF1: an instruction that finds the bit with the value of 1

Syntax:

ff1 rd, rs1

Operation:

Finds the first bit with the value of 1 from the highest bit of rs1 and writes the index of this bit back
into rd. If the highest bit of rs1 is 1, the result 0 is returned. If all the bits in rs1 are 1, the result 64 is
returned.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.4.5 REV: an instruction that reverses the byte order in a word stored in the register

Syntax:

www.t-head.cn 298

Chapter 15. Appendix B T-Head Extended Instructions

rev rd, rs1

Operation:

rd[63:56] ←rs1[7:0]

rd[55:48] ←rs1[15:8]

rd[47:40] ←rs1[23:16]

rd[39:32] ←rs1[31:24]

rd[31:24] ←rs1[39:32]

rd[23:16] ←rs1[47:40]

rd[15:8] ←rs1[55:48]

rd[7:0] ←rs1[63:56]

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.4.6 REVW: an instruction that reverses the byte order in a low 32-bit word

Syntax:

revw rd, rs1

Operation:

tmp[31:24] ←rs1[7:0]

tmp [23:16] ←rs1[15:8]

tmp [15:8] ←rs1[23:16]

tmp [7:0] ←rs1[31:24]

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

www.t-head.cn 299

Chapter 15. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Instruction format:

15.4.7 TST: an instruction that tests bits with the value of 0

Syntax:

tst rd, rs1, imm6

Operation:

if(rs1[imm6] == 1)

rd←1

else

rd←0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.4.8 TSTNBZ: an instruction that tests bytes with the value of 0

Syntax:

tstnbz rd, rs1

Operation:

rd[63:56] ← (rs1[63:56] == 0) ? 8’hff : 8’h0

rd[55:48] ← (rs1[55:48] == 0) ? 8’hff : 8’h0

rd[47:40] ← (rs1[47:40] == 0) ? 8’hff : 8’h0

rd[39:32] ← (rs1[39:32] == 0) ? 8’hff : 8’h0

rd[31:24] ← (rs1[31:24] == 0) ? 8’hff : 8’h0

www.t-head.cn 300

Chapter 15. Appendix B T-Head Extended Instructions

rd[23:16] ← (rs1[23:16] == 0) ? 8’hff : 8’h0

rd[15:8] ← (rs1[15:8] == 0) ? 8’hff : 8’h0

rd[7:0] ← (rs1[7:0] == 0) ? 8’hff : 8’h0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

15.5 Appendix B-5 Storage instructions

The storage instruction set extends storage instructions. Each instruction has 32 bits.

Arithmetic operation instructions in this instruction set are described in alphabetical order.

15.5.1 FLRD: a load doubleword instruction that shifts floating-point registers

Syntax:

flrd rd, rs1, rs2, imm2

Operation:

rd ←mem[(rs1+rs2<<imm2)+7: (rs1+rs2<<imm2)]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

www.t-head.cn 301

Chapter 15. Appendix B T-Head Extended Instructions

15.5.2 FLRW: a load word instruction that shifts floating-point registers

Syntax:

flrw rd, rs1, rs2, imm2

Operation:

rd ←one_extend(mem[(rs1+rs2<<imm2)+3: (rs1+rs2<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

15.5.3 FLURD: a load doubleword instruction that shifts low 32 bits of floating-point
registers

Syntax:

flurd rd, rs1, rs2, imm2

Operation:

rd ←mem[(rs1+rs2[31:0]<<imm2)+7: (rs1+rs2[31:0]<<imm2)]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

www.t-head.cn 302

Chapter 15. Appendix B T-Head Extended Instructions

15.5.4 FLURW: a load word instruction that shifts low 32 bits of floating-point registers

Syntax:

flurw rd, rs1, rs2, imm2

Operation:

rd ←one_extend(mem[(rs1+rs2[31:0]<<imm2)+3: (rs1+rs2[31:0]<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

15.5.5 FSRD: a store doubleword instruction that shifts floating-point registers

Syntax:

fsrd rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2<<imm2)+7: (rs1+rs2<<imm2)] ←rd[63:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

www.t-head.cn 303

Chapter 15. Appendix B T-Head Extended Instructions

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

15.5.6 FSRW: a store word instruction that shifts floating-point registers.

Syntax:

fsrw rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2<<imm2)+3: (rs1+rs2<<imm2)] ←rd[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

15.5.7 FSURD: a store doubleword instruction that shifts low 32 bits of floating-point
registers

Syntax:

fsurd rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2[31:0]<<imm2)+7: (rs1+rs2[31:0]<<imm2)] ←rd[63:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

www.t-head.cn 304

Chapter 15. Appendix B T-Head Extended Instructions

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

15.5.8 FSURW: a store word instruction that shifts low 32 bits of floating-point reg-
isters

Syntax:

fsurw rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2[31:0]<<imm2)+3: (rs1+rs2[31:0]<<imm2)] ←rd[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

15.5.9 LBIA: a base-address auto-increment instruction that extends signed bits and
loads bytes

Syntax:

lbia rd, (rs1), imm5,imm2

Operation:

www.t-head.cn 305

Chapter 15. Appendix B T-Head Extended Instructions

rd ←sign_extend(mem[rs1])

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

15.5.10 LBIB: a load byte instruction that auto-increments the base address and ex-
tends signed bits

Syntax:

lbib rd, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

rd ←sign_extend(mem[rs1])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

www.t-head.cn 306

Chapter 15. Appendix B T-Head Extended Instructions

15.5.11 LBUIA: a base-address auto-increment instruction that extends zero bits and
loads bytes

Syntax:

lbuia rd, (rs1), imm5,imm2

Operation:

rd ←zero_extend(mem[rs1])

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

15.5.12 LBUIB: a load byte instruction that auto-increments the base address and
extends zero bits

Syntax:

lbuib rd, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

rd ←zero_extend(mem[rs1])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

www.t-head.cn 307

Chapter 15. Appendix B T-Head Extended Instructions

Instruction format:

15.5.13 LDD: an instruction that loads double registers

Syntax:

ldd rd1,rd2, (rs1),imm2

Operation:

address←rs1 + zero_extend(imm2<<4)

rd1←mem[address+7:address]

rd2←mem[address+15:address+8]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd1, rd2, and rs1 must not be the same.

Instruction format:

15.5.14 LDIA: a base-address auto-increment instruction that loads doublewords and
extends signed bits

Syntax:

ldia rd, (rs1), imm5,imm2

Operation:

rd ←sign_extend(mem[rs1+7:rs1])

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

www.t-head.cn 308

Chapter 15. Appendix B T-Head Extended Instructions

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

15.5.15 LDIB: a load doubleword instruction that auto-increments the base address
and extends the signed bits

Syntax:

ldib rd, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

rd ←sign_extend(mem[rs1+7:rs1])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

15.5.16 LHIA: a base-address auto-increment instruction that loads halfwords and
extends signed bits

Syntax:

lhia rd, (rs1), imm5,imm2

Operation:

www.t-head.cn 309

Chapter 15. Appendix B T-Head Extended Instructions

rd ←sign_extend(mem[rs1+1:rs1])

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

15.5.17 LHIB: a load halfword instruction that auto-increments the base address and
extends signed bits

Syntax:

lhib rd, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

rd ←sign_extend(mem[rs1+1:rs1])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

www.t-head.cn 310

Chapter 15. Appendix B T-Head Extended Instructions

15.5.18 LHUIA: a base-address auto-increment instruction that extends zero bits and
loads halfwords

Syntax:

lhuia rd, (rs1), imm5,imm2

Operation:

rd ←zero_extend(mem[rs1+1:rs1])

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

15.5.19 LHUIB: a load halfword instruction that auto-increments the base address and
extends zero bits

Syntax:

lhuib rd, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

rd ←zero_extend(mem[rs1+1:rs1])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

www.t-head.cn 311

Chapter 15. Appendix B T-Head Extended Instructions

Instruction format:

15.5.20 LRB: a load byte instruction that shifts registers and extends signed bits

Syntax:

lrb rd, rs1, rs2, imm2

Operation:

rd ←sign_extend(mem[(rs1+rs2<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.21 LRBU: a load byte instruction that shifts registers and extends zero bits

Syntax:

lrbu rd, rs1, rs2, imm2

Operation:

rd ←zero_extend(mem[(rs1+rs2<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

www.t-head.cn 312

Chapter 15. Appendix B T-Head Extended Instructions

15.5.22 LRD: a load doubleword instruction that shifts registers

Syntax:

lrd rd, rs1, rs2, imm2

Operation:

rd ←mem[(rs1+rs2<<imm2)+7: (rs1+rs2<<imm2)]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.23 LRH: a load halfword instruction that shifts registers and extends signed bits

Syntax:

lrh rd, rs1, rs2, imm2

Operation:

rd ←sign_extend(mem[(rs1+rs2<<imm2)+1: (rs1+rs2<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.24 LRHU: a load halfword instruction that shifts registers and extends zero bits

Syntax:

lrhu rd, rs1, rs2, imm2

Operation:

www.t-head.cn 313

Chapter 15. Appendix B T-Head Extended Instructions

rd ←zero_extend(mem[(rs1+rs2<<imm2)+1: (rs1+rs2<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.25 LRW: a load word instruction that shifts registers and extends signed bits

Syntax:

lrw rd, rs1, rs2, imm2

Operation:

rd ←sign_extend(mem[(rs1+rs2<<imm2)+3: (rs1+rs2<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.26 LRWU: a load word instruction that shifts registers and extends zero bits

Syntax:

lrwu rd, rs1, rs2, imm2

Operation:

rd ←zero_extend(mem[(rs1+rs2<<imm2)+3: (rs1+rs2<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

www.t-head.cn 314

Chapter 15. Appendix B T-Head Extended Instructions

Instruction format:

15.5.27 LURB: a load byte instruction that shifts low 32 bits of registers and extends
signed bits

Syntax:

lurb rd, rs1, rs2, imm2

Operation:

rd ←sign_extend(mem[(rs1+rs2[31:0]<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

15.5.28 LURBU: a load byte instruction that shifts low 32 bits of registers and extends
zero bits

Syntax:

lurbu rd, rs1, rs2, imm2

Operation:

rd ←zero_extend(mem[(rs1+rs2[31:0]<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

www.t-head.cn 315

Chapter 15. Appendix B T-Head Extended Instructions

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

15.5.29 LURD: a load doubleword instruction that shifts low 32 bits of registers

Syntax:

lurd rd, rs1, rs2, imm2

Operation:

rd ←mem[(rs1+rs2[31:0]<<imm2)+7: (rs1+rs2[31:0]<<imm2)]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

15.5.30 LURH: a load halfword instruction that shifts low 32 bits of registers and
extends signed bits

Syntax:

lurh rd, rs1, rs2, imm2

Operation:

rd ←sign_extend(mem[(rs1+rs2[31:0]<<imm2)+1:

(rs1+rs2[31:0]<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

www.t-head.cn 316

Chapter 15. Appendix B T-Head Extended Instructions

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

15.5.31 LURHU: a load halfword instruction that shifts low 32 bits of registers and
extends zero bits

Syntax:

lurhu rd, rs1, rs2, imm2

Operation:

rd ←zero_extend(mem[(rs1+rs2[31:0]<<imm2)+1:

(rs1+rs2[31:0]<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

15.5.32 LURW: a load word instruction that shifts low 32 bits of registers and extends
signed bits

Syntax:

lurw rd, rs1, rs2, imm2

Operation:

rd ←sign_extend(mem[(rs1+rs2[31:0]<<imm2)+3:

(rs1+rs2[31:0]<<imm2)])

Permission:

www.t-head.cn 317

Chapter 15. Appendix B T-Head Extended Instructions

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

15.5.33 LURWU: a load word instruction that shifts 32 bits of registers and extends
zero bits

Syntax:

lwd rd1, rd2, (rs1),imm2

Operation:

address←rs1+zero_extend(imm2<<3)

rd1 ←sign_extend(mem[address+3: address])

rd2 ←sign_extend(mem[address+7: address+4])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd1, rd2, and rs1 must not be the same.

Instruction format:

15.5.34 LWD: a load word instruction that loads double registers and extends signed
bits

Syntax:

lwd rd, imm7(rs1)

www.t-head.cn 318

Chapter 15. Appendix B T-Head Extended Instructions

Operation:

address←rs1+sign_extend(imm7)

rd ←sign_extend(mem[address+31: address])

rd+1 ←sign_extend(mem[address+63: address+32])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.35 LWIA: a base-address auto-increment instruction that extends signed bits and
loads words

Syntax:

lwia rd, (rs1), imm5,imm2

Operation:

rd ←sign_extend(mem[rs1+3:rs1])

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

www.t-head.cn 319

Chapter 15. Appendix B T-Head Extended Instructions

15.5.36 LWIB: a load word instruction that auto-increments the base address and
extends signed bits

Syntax:

lwib rd, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

rd ←sign_extend(mem[rs1+3:rs1])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

15.5.37 LWUD: a load word instruction that loads double registers and extends zero
bits

Syntax:

lwud rd1,rd2, (rs1),imm2

Operation:

address←rs1+zero_extend(imm2<<3)

rd1 ←zero_extend(mem[address+3: address])

rd2 ←zero_extend(mem[address+7: address+4])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

www.t-head.cn 320

Chapter 15. Appendix B T-Head Extended Instructions

The values of rd1, rd2, and rs1 must not be the same.

Instruction format:

15.5.38 LWUIA: a base-address auto-increment instruction that extends zero bits and
loads words

Syntax:

lwuia rd, (rs1), imm5,imm2

Operation:

rd ←zero_extend(mem[rs1+3:rs1])

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

15.5.39 LWUIB: a load word instruction that auto-increments the base address and
extends zero bits

Syntax:

lwuib rd, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

rd ←zero_extend(mem[rs1+3:rs1])

Permission:

M mode/S mode/U mode

www.t-head.cn 321

Chapter 15. Appendix B T-Head Extended Instructions

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

15.5.40 SBIA: a base-address auto-increment instruction that stores bytes

Syntax:

sbia rs2, (rs1), imm5,imm2

Operation:

mem[rs1]←rs2[7:0]

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.41 SBIB: a store byte instruction that auto-increments the base address

Syntax:

sbib rs2, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

mem[rs1] ←rs2[7:0]

Permission:

M mode/S mode/U mode

www.t-head.cn 322

Chapter 15. Appendix B T-Head Extended Instructions

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.42 SDD: an instruction that stores double registers

Syntax:

sdd rd1,rd2, (rs1),imm2

Operation:

address←rs1 + zero_extend(imm2<<4)

mem[address+7:address] ←rd1

mem[address+15:address+8]←rd2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.43 SDIA: a base-address auto-increment instruction that stores doublewords

Syntax:

sdia rs2, (rs1), imm5,imm2

Operation:

mem[rs1+7:rs1]←rs2[63:0]

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

www.t-head.cn 323

Chapter 15. Appendix B T-Head Extended Instructions

Instruction format:

15.5.44 SDIB: a store doubleword instruction that auto-increments the base address

Syntax:

sdib rs2, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

mem[rs1+7:rs1] ←rs2[63:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.45 SHIA: a base-address auto-increment instruction that stores halfwords

Syntax:

shia rs2, (rs1), imm5,imm2

Operation:

mem[rs1+1:rs1]←rs2[15:0]

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

www.t-head.cn 324

Chapter 15. Appendix B T-Head Extended Instructions

15.5.46 SHIB: a store halfword instruction that auto-increments the base address

Syntax:

shib rs2, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

mem[rs1+1:rs1] ←rs2[15:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.47 SRB: a store byte instruction that shifts registers

Syntax:

srb rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2<<imm2)] ←rd[7:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.48 SRD: a store doubleword instruction that shifts registers

Syntax:

srd rd, rs1, rs2, imm2

www.t-head.cn 325

Chapter 15. Appendix B T-Head Extended Instructions

Operation:

mem[(rs1+rs2<<imm2)+7: (rs1+rs2<<imm2)] ←rd[63:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.49 SRH: a store halfword instruction that shifts registers

Syntax:

srh rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2<<imm2)+1: (rs1+rs2<<imm2)] ←rd[15:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.50 SRW: a store word instruction that shifts registers

Syntax:

srw rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2<<imm2)+3: (rs1+rs2<<imm2)] ←rd[31:0]

Permission:

M mode/S mode/U mode

www.t-head.cn 326

Chapter 15. Appendix B T-Head Extended Instructions

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.51 SURB: a store byte instruction that shifts low 32 bits of registers

Syntax:

surb rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2[31:0]<<imm2)] ←rd[7:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

15.5.52 SURD: a store doubleword instruction that shifts low 32 bits of registers

Syntax:

surd rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2[31:0]<<imm2)+7: (rs1+rs2[31:0]<<imm2)] ←rd[63:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

www.t-head.cn 327

Chapter 15. Appendix B T-Head Extended Instructions

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

15.5.53 SURH: a store halfword instruction that shifts low 32 bits of registers

Syntax:

surh rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2[31:0]<<imm2)+1: (rs1+rs2[31:0]<<imm2)] ←rd[15:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

15.5.54 SURW: a store word instruction that shifts low 32 bits of registers

Syntax:

surw rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2[31:0]<<imm2)+3: (rs1+rs2[31:0]<<imm2)] ←rd[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

www.t-head.cn 328

Chapter 15. Appendix B T-Head Extended Instructions

Instruction format:

15.5.55 SWIA: a base-address auto-increment instruction that stores words

Syntax:

swia rs2, (rs1), imm5,imm2

Operation:

mem[rs1+3:rs1]←rs2[31:0]

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.5.56 SWIB: a store word instruction that auto-increments the base address

Syntax:

swib rs2, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

mem[rs1+3:rs1] ←rs2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

www.t-head.cn 329

Chapter 15. Appendix B T-Head Extended Instructions

15.5.57 SWD: an instruction that stores the low 32 bits of double registers

Syntax:

swd rd1,rd2,(rs1),imm2

Operation:

address←rs1+ zero_extend(imm2<<3)

mem[address+3:address] ←rd1[31:0]

mem[address+7:address+4]←rd2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.6 Appendix B-6 Half-precision floating-point instructions

You can use instructions in this instruction set to process floating-point half-precision data. Each instruction
has 32 bits. Instructions in this instruction set are described in alphabetical order.

15.6.1 FADD.H: a half-precision floating-point add instruction

Syntax:

fadd.h fd, fs1, fs2, rm

Operation:

fd ← fs1 + fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, and NX

www.t-head.cn 330

Chapter 15. Appendix B T-Head Extended Instructions

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fadd.h
fd, fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fadd.h fd, fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fadd.h fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fadd.h fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fadd.h fd,
fs1,fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fadd.h fd, fs1, fs2.

Instruction format:

15.6.2 FCLASS.H: a half-precision floating-point classification instruction

Syntax:

fclass.h rd, fs1

Operation:

if (fs1 = -inf)

rd ← 64’h1

if (fs1 = -norm)

rd ← 64’h2

if (fs1 = -subnorm)

rd ← 64’h4

if (fs1 = -zero)

rd ← 64’h8

if (fs1 = +zero)

www.t-head.cn 331

Chapter 15. Appendix B T-Head Extended Instructions

rd ← 64’h10

if (fs1 = +subnorm)

rd ← 64’h20

if (fs1 = +norm)

rd ← 64’h40

if (fs1 = +inf)

rd ← 64’h80

if (fs1 = sNaN)

rd ← 64’h100

if (fs1 = qNaN)

rd ← 64’h200

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

15.6.3 FCVT.D.H: an instruction that converts half-precision floating-point data to
double-precision floating-point data

Syntax:

fcvt.d.h fd, fs1

Operation:

fd ← half_convert_to_double(fs1)

Permission:

M mode/S mode/U mode

www.t-head.cn 332

Chapter 15. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

15.6.4 FCVT.H.D: an instruction that converts double-precision floating-point data to
half-precision floating-point data

Syntax:

fcvt.h.d fd, fs1, rm

Operation:

fd ← double_convert_to_half(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.h.d
fd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.h.d fd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.h.d fd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.h.d fd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.h.d fd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

www.t-head.cn 333

Chapter 15. Appendix B T-Head Extended Instructions

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.h.d fd, fs1.

Instruction format:

15.6.5 FCVT.H.L: an instruction that converts a signed long integer into a half-
precision floating-point number

Syntax:

fcvt.h.l fd, rs1, rm

Operation:

fd ← signed_long_convert_to_half(rs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NX and OF

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.h.l
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.h.l fd, rs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.h.l fd, rs1,
fdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.h.l fd, rs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.h.l fd,
rs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

www.t-head.cn 334

Chapter 15. Appendix B T-Head Extended Instructions

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.h.l fd, rs1.

Instruction format:

15.6.6 FCVT.H.LU: an instruction that converts an unsigned long integer into a half-
precision floating-point number

Syntax:

fcvt.h.lu fd, rs1, rm

Operation:

fd ← unsigned_long_convert_to_half_fp(rs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NX and OF

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.h.lu
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.h.lu fd, rs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.h.lu fd, rs1,
fdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.h.lu fd, rs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.h.lu
fd, rs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

www.t-head.cn 335

Chapter 15. Appendix B T-Head Extended Instructions

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.h.lu fd, rs1.

Instruction format:

15.6.7 FCVT.H.S: an instruction that converts single precision floating-point data to
half-precision floating-point data

Syntax:

fcvt.h.s fd, fs1, rm

Operation:

fd ← single_convert_to_half(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.h.s
fd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.h.s fd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.h.s fd, fs1,
fdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.h.s fd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.h.s fd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

www.t-head.cn 336

Chapter 15. Appendix B T-Head Extended Instructions

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.h.s fd, fs1.

Instruction format:

15.6.8 FCVT.H.W: an instruction that converts a signed integer into a half-precision
floating-point number

Syntax:

fcvt.h.w fd, rs1, rm

Operation:

fd ← signed_int_convert_to_half(rs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NX and OF

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.h.w
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.h.w fd, rs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.h.w fd, rs1,
fdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.h.w fd, rs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.h.w
fd, rs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

www.t-head.cn 337

Chapter 15. Appendix B T-Head Extended Instructions

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.h.w fd, rs1.

Instruction format:

15.6.9 FCVT.H.WU: an instruction that converts an unsigned integer into a half-
precision floating-point number

Syntax:

fcvt.h.wu fd, rs1, rm

Operation:

fd ← unsigned_int_convert_to_half_fp(rs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NX and OF

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.h.wu
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.h.wu fd, rs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.h.wu fd, rs1,
fdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.h.wu fd, rs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.h.wu
fd, rs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

www.t-head.cn 338

Chapter 15. Appendix B T-Head Extended Instructions

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.h.wu fd, rs1.

Instruction format:

15.6.10 FCVT.L.H: an instruction that converts a half-precision floating-point number
to a signed long integer

Syntax:

fcvt.l.h rd, fs1, rm

Operation:

rd ← half_convert_to_signed_long(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.l.h
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.l.h rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.l.h rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.l.h rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.l.h rd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

www.t-head.cn 339

Chapter 15. Appendix B T-Head Extended Instructions

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.l.h rd, fs1.

Instruction format:

15.6.11 FCVT.LU.H: an instruction that converts a half-precision floating-point num-
ber to an unsigned long integer

Syntax:

fcvt.lu.h rd, fs1, rm

Operation:

rd ← half_convert_to_unsigned_long(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.lu.h
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.lu.h rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.lu.h rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.lu.h rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.lu.h
rd, fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

www.t-head.cn 340

Chapter 15. Appendix B T-Head Extended Instructions

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.lu.h rd, fs1.

Instruction format:

15.6.12 FCVT.S.H: an instruction that converts half-precision floating-point data to
single precision floating-point data

Syntax:

fcvt.s.h fd, fs1

Operation:

fd ← half_convert_to_single(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

15.6.13 FCVT.W.H: an instruction that converts a half-precision floating-point number
to a signed integer

Syntax:

fcvt.w.h rd, fs1, rm

Operation:

tmp ← half_convert_to_signed_int(fs1)

rd←sign_extend(tmp)

Permission:

M mode/S mode/U mode

www.t-head.cn 341

Chapter 15. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.w.h
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.w.h rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.w.h rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.w.h rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.w.h
rd, fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.w.h rd, fs1.

Instruction format:

15.6.14 FCVT.WU.H: an instruction that converts a half-precision floating-point num-
ber to an unsigned integer

Syntax:

fcvt.wu.h rd, fs1, rm

Operation:

tmp ← half_convert_to_unsigned_int(fs1)

rd←sign_extend(tmp)

Permission:

M mode/S mode/U mode

www.t-head.cn 342

Chapter 15. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.wu.h
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.wu.h rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.wu.h rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.wu.h rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.wu.h
rd, fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.wu.h rd, fs1.

Instruction format:

15.6.15 FDIV.H: a half-precision floating-point division instruction

Syntax:

fdiv.h fd, fs1, fs2, rm

Operation:

fd ← fs1 / fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

www.t-head.cn 343

Chapter 15. Appendix B T-Head Extended Instructions

Affected flag bits:

Floating-point status bits NV, DZ, OF, UF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fdiv.h
fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fdiv.h fd fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fdiv.h fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fdiv.h fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fdiv.h fd,
fs1, fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fdiv.h fd, fs1, fs2.

Instruction format:

15.6.16 FEQ.H: an equal instruction that compares two half-precision numbers

Syntax:

feq.h rd, fs1, fs2

Operation:

if(fs1 == fs2)

rd ← 1

else

rd ← 0

Permission:

M mode/S mode/U mode

www.t-head.cn 344

Chapter 15. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

15.6.17 FLE.H: a less than or equal to instruction that compares two half-precision
floating-point numbers

Syntax:

fle.h rd, fs1, fs2

Operation:

if(fs1 <= fs2)

rd ← 1

else

rd ← 0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

15.6.18 FLH: an instruction that loads half-precision floating-point data

Syntax:

flh fd, imm12(rs1)

Operation:

www.t-head.cn 345

Chapter 15. Appendix B T-Head Extended Instructions

address←rs1+sign_extend(imm12)

fd[15:0] ← mem[(address+1):address]

fd[63:16] ← 48’hffffffffffff

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Affected flag bits:

None

Instruction format:

15.6.19 FLT.H: a less than instruction that compares two half-precision floating-point
numbers

Syntax:

flt.h rd, fs1, fs2

Operation:

if(fs1 < fs2)

rd ← 1

else

rd ← 0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

www.t-head.cn 346

Chapter 15. Appendix B T-Head Extended Instructions

15.6.20 FMADD.H: a half-precision floating-point multiply-add instruction

Syntax:

fmadd.h fd, fs1, fs2, fs3, rm

Operation:

fd ← fs1*fs2 + fs3

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmadd.h
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmadd.h fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmadd.h fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmadd.h fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmadd.h
fd, fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmadd.h fd, fs1, fs2, fs3.

Instruction format:

www.t-head.cn 347

Chapter 15. Appendix B T-Head Extended Instructions

15.6.21 FMAX.H: a half-precision floating-point maximum instruction

Syntax:

fmax.h fd, fs1, fs2

Operation:

if(fs1 >= fs2)

fd ← fs1

else

fd ← fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

15.6.22 FMIN.H: a half-precision floating-point minimum instruction

Syntax:

fmin.h fd, fs1, fs2

Operation:

if(fs1 >= fs2)

fd ← fs2

else

fd ← fs1

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

www.t-head.cn 348

Chapter 15. Appendix B T-Head Extended Instructions

Affected flag bits:

Floating-point status bit NV

Instruction format:

15.6.23 FMSUB.H: a half-precision floating-point multiply-subtract instruction

Syntax:

fmsub.h fd, fs1, fs2, fs3, rm

Operation:

fd ← fs1*fs2 - fs3

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmsub.h
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmsub.h fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmsub.h fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmsub.h fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmsub.h
fd, fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmsub.h fd, fs1, fs2, fs3.

www.t-head.cn 349

Chapter 15. Appendix B T-Head Extended Instructions

Instruction format:

15.6.24 FMUL.H: a half-precision floating-point multiply instruction

Syntax:

fmul.h fd, fs1, fs2, rm

Operation:

fd ← fs1 * fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmul.h
fd, fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmul.h fd, fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmul.h fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmul.h fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmul.h fd,
fs1,fs2 , rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmul.h fs1,fs2.

Instruction format:

www.t-head.cn 350

Chapter 15. Appendix B T-Head Extended Instructions

15.6.25 FMV.H.X: a half-precision floating-point write transmit instruction

Syntax:

fmv.h.x fd, rs1

Operation:

fd[15:0] ← rs1[15:0]

fd[63:16] ← 48’hffffffffffff

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

15.6.26 FMV.X.H: a transmission instruction that reads half-precision floating-point
registers

Syntax:

fmv.x.h rd, fs1

Operation:

tmp[15:0] ← fs1[15:0]

rd ← sign_extend(tmp[15:0])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

www.t-head.cn 351

Chapter 15. Appendix B T-Head Extended Instructions

Affected flag bits:

None

Instruction format:

15.6.27 FNMADD.H: a half-precision floating-point negate-(multiply-add) instruction

Syntax:

fnmadd.h fd, fs1, fs2, fs3, rm

Operation:

fd ←-(fs1*fs2 + fs3)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fnmadd.h
fd,fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fnmadd.h fd,fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fnmadd.h fd,fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fnmadd.h fd,fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fnmadd.h
fd,fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fnmadd.h fd,fs1, fs2, fs3.

www.t-head.cn 352

Chapter 15. Appendix B T-Head Extended Instructions

Instruction format:

15.6.28 FNMSUB.H: a half-precision floating-point negate-(multiply-subtract) instruc-
tion

Syntax:

fnmsub.h fd, fs1, fs2, fs3, rm

Operation:

fd ← -(fs1*fs2 - fs3)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fnmsub.h
fd,fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fnmsub.h fd,fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fnmsub.h fd,fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fnmsub.h fd,fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fnmsub.h
fd,fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fnmsub.h fd,fs1, fs2, fs3.

Instruction format:

www.t-head.cn 353

Chapter 15. Appendix B T-Head Extended Instructions

15.6.29 FSGNJ.H: a half-precision floating-point sign-injection instruction

Syntax:

fsgnj.h fd, fs1, fs2

Operation:

fd[14:0] ← fs1[14:0]

fd[15] ← fs2[15]

fd[63:16] ← 48’hffffffffffff

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

15.6.30 FSGNJN.H: a half-precision floating-point sign-injection negate instruction

Syntax:

fsgnjn.h fd, fs1, fs2

Operation:

fd[14:0] ← fs1[14:0]

fd[15] ← ! fs2[15]

fd[63:16] ← 48’hffffffffffff

Permission:

M mode/S mode/U mode

www.t-head.cn 354

Chapter 15. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

15.6.31 FSGNJX.H: a half-precision floating-point sign-injection XOR instruction

Syntax:

fsgnjx.h fd, fs1, fs2

Operation:

fd[14:0] ← fs1[14:0]

fd[15] ← fs1[15] ^ fs2[15]

fd[63:16] ← 48’hffffffffffff

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

15.6.32 FSH: an instruction that stores half-precision floating point numbers

Syntax:

fsh fs2, imm12(fs1)

Operation:

address←fs1+sign_extend(imm12)

mem[(address+1):address] ← fs2[15:0]

www.t-head.cn 355

Chapter 15. Appendix B T-Head Extended Instructions

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

15.6.33 FSQRT.H: an instruction that calculates the square root of the half-precision
floating-point number

Syntax:

fsqrt.h fd, fs1, rm

Operation:

fd ← sqrt(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fsqrt.h
fd, fs1,rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fsqrt.h fd, fs1,rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fsqrt.h fd, fs1,rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fsqrt.h fd, fs1,rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fsqrt.h fd,
fs1,rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

www.t-head.cn 356

Chapter 15. Appendix B T-Head Extended Instructions

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fsqrt.h fd, fs1.

Instruction format:

15.6.34 FSUB.H: a half-precision floating-point subtract instruction

Syntax:

fsub.h fd, fs1, fs2, rm

Operation:

fd ← fs1 - fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fsub.h
fd, fs1,fs2,rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fsub.h fd, fs1,fs2,rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fsub.h fd,
fs1,fs2,rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fsub.h fd,
fs1,fs2,rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fsub.h fd,
fs1,fs2,rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fsub.h fd, fs1,fs2.

www.t-head.cn 357

Chapter 15. Appendix B T-Head Extended Instructions

Instruction format:

www.t-head.cn 358

CHAPTER 16

Appendix C Control Registers

This section describes the M-mode control registers, S-mode control registers, and U-mode control registers.

16.1 Appendix C-1 M-mode control registers

M-mode control registers are classified by function into M-mode information registers, M-mode exception
configuration registers, M-mode exception handling registers, M-mode memory protection registers, M-mode
counter registers, and M-mode counter configuration registers.

16.1.1 M-mode information register group

16.1.1.1 Machine vendor ID register (mvendorid)

The mvendorid register stores the vendor IDs of T-Head Semiconductor Co., Ltd. It is not defined and the
values are all zero.

This register is 64 bits wide and is read-only in M-mode. Accesses in non-M-mode and writes in M-mode
will cause an illegal instruction exception.

16.1.1.2 Machine architecture ID register (marchid)

The marchid register stores the architecture IDs of CPU cores. It stores internal IDs of T-Head Semiconductor
Co., Ltd. and its reset value is subject to the product.

359

Chapter 16. Appendix C Control Registers

This register is 64 bits wide and is read-only in M-mode. Accesses in non-M-mode and writes in M-mode
will cause an illegal instruction exception.

16.1.1.3 Machine implementation ID register (mimpid)

The mimpid register stores hardware implementation IDs of CPU cores. This register is not implemented
by C910, and its read access value is 0.

This register is 64 bits wide and is read-only in M-mode. Accesses in non-M-mode and writes in M-mode
will cause an illegal instruction exception.

16.1.1.4 Machine hart ID register (mhartid)

The mhartid register stores hart IDs of CPU cores.

This register is 64 bits wide and is read-only in M-mode. Accesses in non-M-mode and writes in M-mode
will cause an illegal instruction exception.

16.1.2 M-mode exception configuration register group

16.1.2.1 Machine status register (mstatus)

The mstatus register stores status and control information of the CPU in M-mode, including the global
interrupt enable bit, exception preserve interrupt enable bit, and exception preserve privilege mode bit.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

Machine status register (mstatus)

SIE: supervisor interrupt enable bit

www.t-head.cn 360

Chapter 16. Appendix C Control Registers

• When SIE is 0, S-mode interrupts are invalid.

• When SIE is 1,S-mode interrupts are valid.

This bit is reset to 0 when the CPU is downgraded to the S-mode response interrupt, and is set to the
value of SPIE when the CPU exits the interrupt service program.

MIE: machine interrupt enable bit

• When MIE is 0, M-mode interrupts are invalid.

• When MIE is 1, M-mode interrupts are valid.

This bit is reset to 0 when the response is interrupted in M-mode on the CPU, and is set to the value
of MPIE when the CPU exits the interrupt service program.

SPIE: supervisor preserve interrupt enable bit

This bit stores the value of the SIE bit before the response is interrupted in S-mode on the CPU.

This bit will be reset to 0, and set to 1 when the CPU exits the interrupt service program.

MPIE: machine preserve interrupt enable bit

This bit stores the value of the MIE bit before the response is interrupted in M-mode on the CPU.

This bit will be reset to 0, and set to 1 when the CPU exits the interrupt exception service program.

SPP: supervisor preserve privilege bit

This bit stores the privilege status before the CPU accesses the exception service program in S-mode.

• When SPP is 2’b00, the CPU is in U-mode before accessing the exception service program.

• When SPP is 2’b01, the CPU is in S-mode before accessing the exception service program.

This bit will be reset to 2’b01.

MPP: machine preserve privilege bit

This bit stores the privilege status before the CPU accesses the exception service program in M-mode.

• When MPP is 2’b00, the CPU is in U-mode before entering the exception service program.

• When MPP is 2’b01, the CPU is in S-mode before accessing the exception service program.

• When MPP is 2’b11, the CPU is in M-mode before entering the exception service program.

This bit will be reset to 2’b11.

FS: floating-point status bit

This bit determines whether to store floating-point registers during context switching.

• When FS is 2’b00, the floating-point unit is in the Off state and exceptions will occur for accesses to
related floating-point registers.

• When FS is 2’b01, the floating-point unit is in the Initial state.

www.t-head.cn 361

Chapter 16. Appendix C Control Registers

• When FS is 2’b10, the floating-point unit is in the Clean state.

• When FS is 2’b11, the floating-point unit is in the Dirty state, which means the floating-point and
control registers have been modified.

XS: extension status bit

C910 has no extension units, and therefore this bit is fixed to 0.

MPRV: modify privilege mode

• When MPRV is 1, load and store requests are executed based on the privilege mode in MPP.

• When MPRV is 0, load and store requests are executed based on the current privilege mode of the
CPU.

SUM: allow S-mode accesses to U-mode virtual memory spaces

• When SUM is 1, load, storage, and value-taking requests can be initiated in S-mode to access U-mode
virtual memory spaces.

• When SUM is 0, load, storage, and value-taking requests cannot be initiated in S-mode to access virtual
memory spaces marked as U-mode.

MXR: allow accesses of load requests to memory spaces marked as executable

• When MXR is 1, accesses of load requests are allowed to virtual memory spaces marked as executable
or readable.

• When MXR is 0, accesses of load requests are allowed only to virtual memory spaces marked as
readable.

TVM: trap virtual memory

• When TVM is 1, an illegal instruction exception occurs for reads and writes to the satp control register
and for the execution of the sfence instruction in S-mode.

• When TVM is 0, reads and writes to the satp control register and the execution of the sfence instruction
are allowed in S-mode.

TW: timeout wait

• When TW is 1, an illegal instruction exception occurs if the WFI instruction is executed in S-mode.

• When TW is 0, the WFI instruction can be executed in S-mode.

TSR: trap sret

• When TSR is 1, an illegal instruction exception occurs if the sret instruction is executed in S-mode.

When TSR is 0, the sret instruction can be executed in S-mode.

VS: vector status bit

This bit determines whether to store vector registers during context switching.

www.t-head.cn 362

Chapter 16. Appendix C Control Registers

• When VS is 2’b00, the vector unit is in the Off state and exceptions will occur for accesses to related
vector registers.

• When VS is 2’b01, the vector unit is in the Initial state.

• When VS is 2’b10, the vector unit is in the Clean state.

• When VS is 2’b11, the vector unit is in the Dirty state, which means the vector registers and vector
control registers have been modified.

The VS bit is valid only when the vector execution unit is configured, and is always 0 if the vector
execution unit is not configured.

UXL: register width

This bit is read-only and always 2, which means the register is 64 bits wide in U-mode.

SXL: register width

This bit is read-only and always 2, which means the register is 64 bits wide in S-mode.

SD: dirty state sum bit of the floating-point, vector, and extension units

• When SD is 1, the floating-point unit, vector unit, or extension unit is in the Dirty state.

• When SD is 0, none of the floating-point, vector, and extension units is in the Dirty state.

16.1.2.2 M-mode instruction set architecture register (misa)

The misa register stores the features of the instruction set architecture supported by the CPU.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

C910 supports the RV64GC instruction set architecture, and the reset value of the MISA register is
0x800000000094112d. For more information about the assignment rules, see the official document of RISC-V
riscv-privileged.

C910 does not support the dynamic configuration of the MISA register. Writes to this register do not
take effect.

16.1.2.3 M-mode exception downgrade control register (medeleg)

The medeleg register can downgrade exceptions that occur in S-mode and U-mode to S-mode responses. The
lower 16 bits of the medeleg register are in one-to-one correspondence to exception vector tables. Exceptions
to be downgraded to S-mode responses can be selected.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

www.t-head.cn 363

Chapter 16. Appendix C Control Registers

16.1.2.4 M-mode interrupt downgrade control register (mideleg)

The mideleg register can downgrade S-mode interrupts to S-mode responses.

M-mode interrupt downgrade control register (mideleg)

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

16.1.2.5 M-mode interrupt-enable register (mie)

The mie register enables and masks different types of interrupts. This register is 64 bits wide and is readable
and writable in M-mode. Accesses in non-M-mode will cause an illegal instruction exception.

M-mode interrupt-enable register (mie)

SSIE: S-mode software interrupt enable bit

• When SSIE is 0, S-mode software external interrupts are invalid.

• When SSIE is 1, S-mode software external interrupts are valid.

MSIE: M-mode software interrupt enable bit

www.t-head.cn 364

Chapter 16. Appendix C Control Registers

• When MSIE is 0, M-mode software interrupts are invalid.

• When MSIE is 1, M-mode software interrupts are valid.

STIE: S-mode timer interrupt enable bit

• When STIE is 0, S-mode timer interrupts are invalid.

• When STIE is 1, S-mode timer interrupts are valid.

MTIE: M-mode timer interrupt enable bit

• When MTIE is 0, M-mode timer interrupts are invalid.

• When MTIE is 1, M-mode timer interrupts are valid.

SEIE: S-mode external interrupt enable bit

• When SEIE is 0, S-mode external interrupts are invalid.

• When SEIE is 1, S-mode external interrupts are valid.

MEIE: M-mode external interrupt enable bit

• When MEIE is 0, M-mode external interrupts are invalid.

• When MEIE is 1, M-mode external interrupts are valid.

MOIE: M-mode overflow interrupt enable bit

• When MOIE is 0, M-mode counter overflow interrupts are invalid.

• When MOIE is 1, M-mode counter overflow interrupts are valid.

16.1.2.6 M-mode trap vector base address register (mtvec)

The mtvec register stores the entry address of the exception service program.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

M-mode trap vector base address register (mtvec)

BASE: vector base address bit

The BASE bit indicates the upper 62 bits of the entry address of the exception service program. Com-
bining this base address with 2’b00 obtains the entry address of the exception service program.

www.t-head.cn 365

Chapter 16. Appendix C Control Registers

This bit will be reset to 0.

MODE: vector entry mode bit

• When MODE[1:0] is 2’b00, the base address is used as the entry address for both exceptions and
interrupts.

• When MODE[1:0] is 2’b01, the base address is used as the entry address for exceptions, and BASE
+ 4*cause is used as the entry address for interrupts.

16.1.2.7 M-mode counter access enable register (mcounteren)

The mcounteren register determines whether U-mode counters can be accessed in S-mode.

For more information, see ref:performance_test.

16.1.3 M-mode exception handling register group

16.1.3.1 M-mode scratch register (mscratch)

The mscratch register is used by the CPU to back up temporary data in the exception service program. It
is usually used to store the entry pointer to the local context space in M-mode.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

16.1.3.2 M-mode exception program counter register (mepc)

The mepc register stores the program counter value (PC value) when the CPU exits from the exception
service program. C910 supports 16 bits wide instructions. The MEPC value is aligned with 16 bits and the
lowest bit is 0.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

16.1.3.3 M-mode cause register (mcause)

The mcause register stores the vector numbers of events that trigger exceptions. The vector numbers are
used to handle corresponding events in the exception service program.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

www.t-head.cn 366

Chapter 16. Appendix C Control Registers

M-mode cause register (mcause)

Interrupt: interrupt bit

• When the Interrupt bit is 0, the corresponding exception is not triggered by an interrupt. The exception
code is parsed as an exception.

• When the Interrupt bit is 1, the corresponding exception is triggered by an interrupt. The exception
code is parsed as an interrupt.

Exception Code: exception vector number

When the CPU encounters an exception, the Exception Code bit will be updated to the value of the
exception source.

16.1.3.4 M-mode interrupt-pending register (mip)

The mip register stores information about pending interrupts. When the CPU cannot immediately respond
to an interrupt, the corresponding bit in the mip register will be set.

Writing the msip and ssip registers in the CLINT interrupt controller can trigger corresponding inter-
rupts. After the interrupts become valid, the msip bit and ssip bit can be queried based on the corresponding
bits in the mip register.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

M-mode interrupt-pending register (mip)

SSIP: supervisor software interrupt pending bit

www.t-head.cn 367

Chapter 16. Appendix C Control Registers

• When SSIP is 0, there is no pending S-mode software interrupt on the CPU.

• When SSIP is 1, there are pending S-mode software interrupts on the CPU.

The SSIP bit is readable and writable in M-mode. After it is delegated to S-mode, it is readable and
writable in S-mode. Otherwise, it is read-only in S-mode.

MSIP: M-mode software interrupt pending bit

• When MSIP is 0, there is no pending M-mode software interrupt on the CPU.

• When MSIP is 1, there are pending M-mode software interrupts on the CPU.

This bit is read-only.

STIP: S-mode timer interrupt pending bit

• When STIP is 0, there is no pending S-mode timer interrupt on the CPU.

• When STIP is 1, there are pending S-mode timer interrupts on the CPU.

MTIP: M-mode timer interrupt pending bit

• When MTIP is 0, there is no pending M-mode timer interrupt on the CPU.

• When MTIP is 1, there are pending M-mode timer interrupts on the CPU.

SEIP: S-mode external interrupt pending bit

• When SEIP is 0, there is no pending S-mode external interrupt on the CPU.

• When SEIP is 1, there are pending S-mode external interrupts on the CPU.

MEIP: machine external interrupt pending bit

• When MEIP is 0, there is no pending M-mode external interrupt on the CPU.

• When MEIP is 1, there are pending M-mode external interrupts on the CPU.

MOIP: M-mode overflow interrupt pending bit

• When MOIP is 0, there is no pending M-mode counter overflow interrupt on the CPU.

• When MOIP is 1, there are pending M-mode counter overflow interrupts on the CPU.

16.1.4 M-mode memory protection registers

M-mode memory protection registers are related to the settings of the memory protection unit.

16.1.4.1 Physical memory protection configuration register (pmpcfg)

The pmpcfg register configures access permissions and address matching mode for the physical memory.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

www.t-head.cn 368

Chapter 16. Appendix C Control Registers

For more information, see ref:physical_mem_pmpcfg.

16.1.4.2 Physical memory address register (pmpaddr)

The pmpaddr register configures the address range of each entry of the physical memory.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

For more information, see ref:physical_mem_pmpaddr.

16.1.5 M-mode counter registers

M-mode counter registers belong to the PMU and collect software and hardware information during a
program operation for software development personnel to optimize programs.

16.1.5.1 M-mode cycle counter (mcycle)

The mcycle counter stores the cycles executed by the CPU. When the CPU is in the execution state (non-low
power state), the mcycle register increases the count upon each execution cycle.

The mcycle counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_cont.

16.1.5.2 M-mode instructions-retired counter (minstret)

The minstret counter stores the number of retired instructions of the CPU. The minstret register increases
the count when each instruction retires.

The minstret counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_cont.

16.1.5.3 M-mode event counter (mhpmcountern)

The mhpmcountern counter counts events.

The mhpmcountern counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_cont.

16.1.6 M-mode counter configuration registers

The M-mode counter configuration register (mhpmeventn) selects events for M-mode event counters.

www.t-head.cn 369

Chapter 16. Appendix C Control Registers

16.1.6.1 M-mode event selector (mhpmeventn)

The events mhpmevent3-31 selected by the mhpmeventn register for M-mode event counters mhpmcounter3-
31 are in one-to-one correspondence. In C910, event counters can count only specified events. Therefore,
only specified values can be written to mhpmevent3-31.

The mhpmeventn counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_mhpmevent.

16.1.7 M-mode CPU control and status extension registers

C910 extends some registers for the CPU and status, including the M-mode extension status register (mxs-
tatus) and M-mode hardware control register (mhcr), M-mode hardware operation register (mcor), M-mode
L2 Cache control register (mccr2), M-mode implicit operation register (mhint), M-mode reset vector base ad-
dress register (mrvbr), S-mode counter write enable register (mcounterwen), M-mode event interrupt enable
register (mcounterinten), and M-mode event overflow mark register (mcounterof).

16.1.7.1 M-mode extension status register (mxstatus)

The mxstatus register stores the current privilege mode of the CPU and the enable bit of the extension
functions of C910.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

M-mode extension status register (mxstatus)

PMDU: U-mode performance monitoring count enable bit

When PMDU is 0, performance counters are allowed to count in U-mode.

www.t-head.cn 370

Chapter 16. Appendix C Control Registers

When PMDU is 1, performance counters are not allowed to count in U-mode.

PMDS: S-mode performance monitoring count enable bit

When PMDS is 0, performance counters are allowed to count in S-mode.

When PMDS is 1, performance counters are not allowed to count in S-mode.

PMDM: M-mode performance monitoring count enable bit

When PMDM is 0, performance counters are allowed to count in M-mode.

When PMDM is 1, performance counters are not allowed to count in M-mode.

PMP4K: PMP minimum granularity control bit

The minimum PMP granularity supported by C910 is 4 KB, which is not affected by this bit.

MM: misaligned access enable bit

When MM is 0, misaligned accesses are not supported and cause misaligned exceptions.

When MM is 1, misaligned accesses are supported and processed by hardware. (The default value of
this bit is 1 in C910.)

UCME: execute extended cache instructions in U-mode

When UCME is 0, extended cache instructions cannot be executed in U-mode. Otherwise, instruction
exceptions may occur.

When UCME is 1, extended cache instructions can be executed in U-mode.

CLINTEE: Clint timer/software interrupt supervisor extension enable bit

When CLINTEE is 0, supervisor software interrupts and timer interrupts initiated by Clint are not
responded to.

When CLINTEE is 1, supervisor software interrupts and timer interrupts initiated by Clint can be
responded to.

MHRD: disable hardware writeback

When MHRD is 0, hardware writeback is performed if the TLB is missing.

When MHRD is 1, hardware writeback is not performed after the TLB is missing.

INSDE: disable Icache snoop D-Cache

When INSDE is 0, D-Cache is snooped after I-Cache is missing.

When INSDE is 1, D-Cache is not snooped after I-Cache is missing.

MAEE: extend MMU address attribute

When MAEE is 0, the MMU address attribute is not extended.

When MAEE is 1, the address attribute is extended in the PTE of the MMU. Users can configure the
address attribute of pages.

www.t-head.cn 371

Chapter 16. Appendix C Control Registers

THEADISAEE: enables extended instruction sets

When THEADISAEE is 0, using C910 extended instruction sets causes instruction exceptions.

When THEADISAEE is 1, C910 extended instruction sets can be used.

PM: privilege mode

When PM is 2’b00, the CPU is running in U-mode.

When PM is 2’b01, the CPU is running in S-mode.

When PM is 2’b11, the CPU is running in M-mode. (The PM bit will be reset to M-mode.)

16.1.7.2 M-mode hardware configuration register (mhcr)

The mhcr register configures the performance and functions of the CPU.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

M-mode hardware configuration register (mhcr)

IE: I-Cache enable bit

When IE is 0, I-Cache is disabled.

When IE is 1, I-Cache is enabled.

DE: D-Cache enable bit

When DE is 0, D-Cache is disabled.

When DE is 1, D-Cache is enabled.

WA: cache write allocate set bit

When WA is 0, the data cache is in write non-allocate mode.

When WA is 1, the data cache is in write allocate mode.

WB: cache writeback set bit

www.t-head.cn 372

Chapter 16. Appendix C Control Registers

When WB is 0, the data cache is in write-through mode.

When WB is 1, the data cache is in writeback mode.

C910 supports only the writeback mode. Therefore, the WB bit is fixed to 1.

RS: address return stack set bit

When RS is 0, the return stack is disabled.

When RS is 1, the return stack is enabled.

BPE: branch prediction enable bit

When BPE is 0, branch prediction is disabled.

When BPE is 1, branch prediction is enabled.

BTB: branch target prediction enable bit

When BTB is 0, branch target prediction is disabled.

When BTB is 1, branch target prediction is enabled.

IBPE: indirect branch prediction enable bit

When IBPE is 0, indirect branch prediction is disabled.

When IBPE is 1, indirect branch prediction is enabled.

WBR: write burst transmission enable bit

When WBR is 0, write burst transmission is not supported.

When WBR is 1, write burst transmission is supported.

The WBR bit is fixed to 1 by default in C910, and cannot be modified.

L0BTB: level-1 branch target prediction enable bit

When L0BTB is 0, level-1 branch target prediction is disabled.

When L0BTB is 1, level-1 branch target prediction is enabled.

SCK: ratio of system clock to CPU clock

This bit indicates the ratio of the system clock to the CPU clock. The calculation format is SCK+1.
There are corresponding pins on the CPU. The SCK bit is configured during a reset and cannot be modified
later.

16.1.7.3 M-mode hardware operation register (mcor)

The mcor register performs related operations on caches and branch predictors.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

www.t-head.cn 373

Chapter 16. Appendix C Control Registers

M-mode hardware operation register (mcor)

CACHE_SEL: cache select bit

When CACHE_SEL is 2’b01, the instruction cache is selected.

When CACHE_SEL is 2’b10, the data cache is selected.

When CACHE_SEL is 2’b11, the instruction and data caches are selected.

INV: cache invalidate bit

When INV is 0, caches are not invalidated.

When INV is 1, caches are invalidated.

CLR: dirty entry clear bit

When CLR is 0, dirty entries in caches are not written out of the chip.

When CLR is 1, dirty entries in caches are written out of the chip.

BHT_INV: BHT invalidate bit

When BHT_INV is 0, data in branch history tables (BHTs) is not invalidated.

When BHT_INV is 1, data in BHTs is invalidated.

BTB_INV: BTB invalidate bit

When BTB_INV is 0, data in branch target buffers (BTBs) is not invalidated.

When BTB_INV is 1, data in BTBs is invalidated.

IBP_INV: IBP invalidate bit

When IBP_INV is 0, indirect branch prediction (IBP) data is not invalidated.

When IBP_INV is 1, IBP data is invalidated.

All the preceding invalidate and dirty entry clear bits are set to 1 when corresponding operations are in
progress and reset to 0 when the operations are completed.

www.t-head.cn 374

Chapter 16. Appendix C Control Registers

16.1.7.4 M-mode L2 Cache control register (mccr2)

The mccr2 register configures the access delays of memories in the shared L2 Cache, including L2 Cache
enable/disable, instruction prefetch, and TLB prefetch enable.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an illegal instruction exception.

M-mode L2 Cache control register (mccr2)

RFE: read allocation enable bit

When RFE is 0, if accessed data is missing in the L2 Cache, the data is not written back to the L2
Cache.

When RFE is 1, if accessed data is missing in the L2 Cache, the data is written back to the L2 Cache.

L2EN: L2 Cache enable bit

When L2EN is 0, the L2 Cache is disabled.

When L2EN is 1, the L2 Cache is enabled. (This bit is fixed to 1 in C910.)

DLTNCY: data RAM access cycle configure bit for the L2 Cache

When DLTNCY is 0, the data RAM access cycle is 1.

When DLTNCY is 1, the data RAM access cycle is 2.

When DLTNCY is 2, the data RAM access cycle is 3.

When DLTNCY is 3, the data RAM access cycle is 4.

When DLTNCY is 4, the data RAM access cycle is 5.

When DLTNCY is 5, the data RAM access cycle is 6.

When DLTNCY is 6, the data RAM access cycle is 7.

When DLTNCY is 7, the data RAM access cycle is 8.

DSETUP: data RAM setup configure bit for the L2 Cache

www.t-head.cn 375

Chapter 16. Appendix C Control Registers

When DSETUP is 0, the data RAM does not require an additional setup cycle.

When DSETUP is 1, the data RAM requires an additional setup cycle.

TLTNCY: tag RAM access cycle configure bit for the L2 Cache

When TLTNCY is 0, the tag RAM access cycle is 1.

When TLTNCY is 1, the tag RAM access cycle is 2.

When TLTNCY is 2, the tag RAM access cycle is 3.

When TLTNCY is 3, the tag RAM access cycle is 4.

When TLTNCY is 4, the tag RAM access cycle is 5.

TSETUP: tag RAM setup configure bit for the L2 Cache

When TSETUP is 0, the tag RAM does not require an additional setup cycle.

When TSETUP is 1, the tag RAM requires an additional setup cycle.

IPRF: instruction prefetch capability of the L2 Cache

This bit indicates the number of prefetched cache lines when desired data of a value-taking request is
missing in the L2 Cache.

When IPRF is 0, instruction prefetch is disabled for the L2 Cache.

When IPRF is 1, one cache line is prefetched.

When IPRF is 2, two cache lines are prefetched.

When IPRF is 3, three cache lines are prefetched.

TPRF: TLB prefetch enable bit for the L2 Cache

When TPRF is 0, TLB prefetch is disabled for the L2 Cache.

When TPRF is 1, TLB prefetch is enabled for the L2 Cache.

16.1.7.5 M-mode implicit operation register (mhint)

The mhint register controls the enable/disable of multiple functions of caches.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

M-mode implicit operation register (mhint)

DPLD: D-Cache prefetch enable bit

When DPLD is 0, D-Cache prefetch is disabled.

When DPLD is 1, D-Cache prefetch is enabled.

www.t-head.cn 376

Chapter 16. Appendix C Control Registers

AMR: write allocate policy automatic adjustment enable bit for the L1 Cache

When AMR is 0, the write allocate policy is subject to the page attribute WA of the access address.

When AMR is 1, if multiple cache lines are stored continuously, desired data of subsequent storage
operations of continuous addresses is no longer written to the L1 Cache.

IPLD: I-Cache prefetch enable bit

When IPLD is 0, I-Cache prefetch is disabled.

When IPLD is 1, I-Cache prefetch is enabled.

LPE: loop acceleration enable bit

When LPE is 0, loop acceleration is disabled.

When LPE is 1, loop acceleration is enabled.

IWPE: I-Cache way prediction enable bit

When IWPE is 0, way prediction is disabled for I-Cache.

When IWPE is 1, way prediction is enabled for I-Cache.

SRE: single retirement enable bit

When SRE is 0, single retirement mode is disabled.

When SRE is 1, single retirement mode is enabled.

D_DIS: number of prefetched cache lines in D-Cache

When D_DIS is 0, two cache lines are prefetched.

When D_DIS is 1, four cache lines are prefetched.

When D_DIS is 2, eight cache lines are prefetched.

When D_DIS is 3, 16 cache lines are prefetched.

www.t-head.cn 377

Chapter 16. Appendix C Control Registers

The default value is 0.

L2PLD: the L2 Cache prefetch enable bit

When L2PLD is 0, L2 Cache prefetch is disabled.

When L2PLD is 1, L2 Cache prefetch is enabled.

L2_DIS: number of prefetched cache lines in the L2 Cache

When L2_DIS is 0, eight cache lines are prefetched.

When L2_DIS is 1, 16 cache lines are prefetched.

When L2_DIS is 2, 32 cache lines are prefetched.

When L2_DIS is 3, 64 cache lines are prefetched.

The L2 Cache prefetch is based on the L1 Cache prefetch.

NO_SPEC: spec fail prediction enable bit

When NO_SPEC is 0, spec fail prediction is disabled.

When NO_SPEC is 1, spec fail prediction is enabled.

L2STPLD: store prefetch enable bit for the L2 Cache

When L2STPLD is 0, store prefetch is disabled for the L2 Cache.

When L2STPLD is 1, store prefetch is enabled for the L2 Cache.

TLB_BROAD_DIS: the TLB fence operation broadcast disable bit

When TLB_BROAD_DIS is 0, sfence.vma instruction operations are broadcast to other cores.

When TLB_BROAD_DIS is 1, sfence.vma instruction operations are not broadcast.

This bit is invalid when there is only one core.

FENCERW_BROAD_DIS: fence operation broadcast disable bit

When FENCERW_BROAD_DIS is 0, fence instruction operations are broadcast to other cores.

When FENCERW_BROAD_DIS is 1, fence instruction operations are not broadcast.

This bit is invalid when there is only one core.

FENCEI_BROAD_DIS: fence.i operation broadcast disable bit

When FENCEI_BROAD_DIS is 0, fence.i instruction operations are broadcast to other cores.

When FENCEI_BROAD_DIS is 1, fence.i instruction operations are not broadcast.

This bit is invalid when there is only one core.

www.t-head.cn 378

Chapter 16. Appendix C Control Registers

16.1.7.6 M-mode reset vector base address register (mrvbr)

The mrvbr register stores base addresses of reset exception vectors. Each C910 core has an independent
mrvbr register.

This register is 64 bits wide and is read-only in M-mode. Accesses in non-M-mode will cause an illegal
instruction exception.

M-mode reset vector base address register (mrvbr)

Reset vector base: reset base address

It controls the reset base address of a core.

16.1.7.7 S-mode counter write enable register (mcounterwen)

The mcounterwen register determines whether S-mode event counters can be written in S-mode.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

S-mode counter write enable register (mcounterwen)

When mcounterwen.bit[n] is 1, writes to the corresponding shpmcounter are allowed in S-mode.

When mcounterwen.bit[n] is 0, writes to the corresponding shpmcounter are not allowed in S-mode, and
cause instruction exceptions.

16.1.7.8 M-mode event interrupt enable register (mcounterinten)

The mcounterinten register enables the triggering of interrupts when event counters overflow.

www.t-head.cn 379

Chapter 16. Appendix C Control Registers

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

M-mode event interrupt enable register (mcounterinten)

When mcounterinten.bit[n] is 1, an interrupt is triggered when the corresponding mhpmcounter over-
flows.

When mcounterinten.bit[n] is 0, an interrupt is not triggered when the corresponding mhpmcounter
overflows.

16.1.7.9 M-mode event overflow mark register (mcounteren)

The mcounteren register marks whether event counters overflow.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

M-mode event overflow mark register (mcounteren)

When mcounterof.bit[n] is 1, the corresponding mhpmcounter overflows.

When mcounterof.bit[n] is 0, the corresponding mhpmcounter does not overflow.

www.t-head.cn 380

Chapter 16. Appendix C Control Registers

16.1.8 M-mode cache access extension registers

M-mode cache access extension registers directly read content in the L1 Cache and the L2 Cache for cache
debugging.

16.1.8.1 M-mode cache instruction register (mcins)

The mcins register initiates read requests to the L1 or L2 Cache.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

M-mode cache instruction register (mcins)

R: cache read access

• When R is 0, cache read requests are not initiated.

• When R is 1, cache read requests are initiated.

16.1.8.2 M-mode cache access index register (mcindex)

The mcindex register configures the location of a cache accessed by read requests.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

M-mode cache access index register (mcindex)

RID: RAM flag bit

This bit specifies the accessed RAM.

• When RID is 0, I-Cache tag RAM is accessed.

www.t-head.cn 381

Chapter 16. Appendix C Control Registers

• When RID is 1, I-Cache data RAM is accessed.

• When RID is 2, D-Cache tag RAM is accessed.

• When RID is 3, D-Cache data RAM is accessed.

• When RID is 4, L2 Cache tag RAM is accessed.

• When RID is 5, L2 Cache data RAM is accessed.

• When RID is 12, D-Cache LD tag RAM is accessed.

WAY: cache way information

This bit specifies the RAM access way.

INDEX: cache index

This bit specifies the RAM access index.

16.1.8.3 M-mode cache data register (mcdata0/1)

The mcdata0/1 register records data read from the L1 or L2 Cache.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will
cause an illegal instruction exception.

M-mode cache access data register (mcdata)

www.t-head.cn 382

Chapter 16. Appendix C Control Registers

Table 16.1: Correspondence between cache data content and RAM
types

RAM type CDATA content
ICACHE TAG CDATA0[39:12]: TAG

CDATA0[0]: VALID
ICACHE DATA CDATA0–CDATA1: 128bit DATA
DCACHE TAG CDATA0[39:12]: TAG

CDATA0[2]: DIRTY
CDATA0[1]: SHARED
CDATA0[0]: VALID

DCACHE DATA CDATA0–CDATA1: 128bit DATA
L2CACHE TAG CDATA0[39:12]: TAG

CDATA[1]: DIRTY
CDATA0[0]: VALID

L2CACHE
DATA

CDATA0–CDATA1: 128bit DATA

16.1.9 M-mode CPU model registers

16.1.9.1 M-mode CPU model register (mcpuid)

The mcpuid registers store CPU models. For more information, see the C-SKY Product ID Definition
Regulations (v4.0). The reset value is subject to the product.

16.1.9.2 On-chip bus base address register (mapbaddr)

The mapbaddr register stores the base addresses of on-chip registers (CLINT and PLIC) of the CPU. The
value of this register is subject to hardware integration.

16.1.10 Multi-core extension registers

16.1.10.1 Snoop listening enable register (msmpr)

The msmpr register controls whether cores can process listening requests. The listening request processing
capability is configured for each core separately. The consistency bus of the L2 subsystem controls the
sending of listening requests based on the listening status of each core. This register is readable and writable
in M-mode.

The msmpr register is 64 bits wide. Only bit 0 is defined and the other bits are reserved.

Bit 0: SMPEN: core listening enable bit

www.t-head.cn 383

Chapter 16. Appendix C Control Registers

• When SMPEN is 1’b0, the corresponding core cannot process listening requests, and the L2 subsystem
masks the listening requests bound for the core. (This is the reset value.)

• When SMPEN is 1’b1, the corresponding core can process listening requests, and the L2 subsystem
sends the listening requests bound for the core.

Before a CPU core is powered off, its SMPEN bit must be set to 0 to disable listening. After a core is
powered on, its SMPEN bit must be set to 1 before D-Cache and MMU are enabled. The SMPEN bit must
be set to 1 when a core runs properly (including WFI mode). Otherwise, unexpected results may be caused.

16.2 Appendix C-2 S-mode control registers

S-mode control registers are classified by function into S-mode exception configuration registers, S-mode
exception handling registers, and S-mode address translation registers.

16.2.1 S-mode exception configuration registers

When exceptions and interrupts are downgraded to S-mode responses, exceptions must be configured through
the S-mode exception configuration registers, like in M-mode.

16.2.1.1 S-mode status register (sstatus)

The sstatus register stores status and control information of the CPU in S-mode, including the global
interrupt enable bit, exception preserve interrupt enable bit, and exception preserve privilege mode bit. The
sstatus register is a partial mapping of the mstatus register.

This register is 64 bits wide and is readable and writable in S-mode. Accesses in U-mode will cause an
illegal instruction exception.

S-mode status register (sstatus)

For more information, see ref:appendix_c12_mstatus.

www.t-head.cn 384

Chapter 16. Appendix C Control Registers

16.2.1.2 S-mode interrupt-enable register (sie)

The sie register controls the enable and mask of different types of interrupts, and is a partial mapping of
the mie register. This register is 64 bits wide and readable in S-mode. The write permission in S-mode
is determined by the mideleg register of the corresponding bit. Accesses in U-mode will cause an illegal
instruction exception.

S-mode interrupt-enable register (sie)

For more information, see ref:appendix_c12_mie.

16.2.1.3 S-mode trap vector base address register (stvec)

The stvec register stores the entry address of the exception service program.

This register is 64 bits wide and is readable and writable in S-mode. Accesses in U-mode will cause an
illegal instruction exception.

S-mode trap vector base address register (stvec)

For more information, see ref:appendix_c12_mtvec.

16.2.1.4 S-mode counter access enable register (scounteren)

The scounteren register determines whether U-mode counters can be accessed in U-mode.

For more information, see ref:performance_test_scounteren.

www.t-head.cn 385

Chapter 16. Appendix C Control Registers

16.2.2 S-mode exception handling registers

16.2.2.1 S-mode scratch register (sscratch)

The sscratch register is used by the CPU to back up temporary data in the exception service program. It is
usually used to store the entry pointer to the local context space in S-mode.

This register is 64 bits wide and is readable and writable in S-mode. Accesses in U-mode will cause an
illegal instruction exception.

16.2.2.2 S-mode exception program counter register (sepc)

The sepc register stores the program counter value (PC value) when the CPU exits from the exception
service program. C910 supports 16 bits wide instructions. The values of sepc are aligned with 16 bits and
the lowest bit is 0.

This register is 64 bits wide and is readable and writable in S-mode. Accesses in U-mode will cause an
illegal instruction exception.

16.2.2.3 S-mode cause register (scause)

The scause register stores the vector numbers of events that trigger exceptions. The vector numbers are used
to handle corresponding events in the exception service program.

This register is 64 bits wide and is readable and writable in S-mode. Accesses in U-mode will cause an
illegal instruction exception.

16.2.2.4 S-mode interrupt-pending register (sip)

The sip register stores information about pending interrupts. When the CPU cannot immediately respond
to an interrupt, the corresponding bit in the sip register will be set.

This register is 64 bits wide and readable in S-mode. The write permission is determined by the mideleg
register of the corresponding bit. Accesses in U-mode will cause an illegal instruction exception.

www.t-head.cn 386

Chapter 16. Appendix C Control Registers

S-mode interrupt-pending register (sip)

16.2.3 S-mode address translation registers

Virtual memory spaces need to be accessed in S-mode. The S-mode address translation register (satp)
controls MMU mode switching, hardware writeback base address, and process ID.

16.2.3.1 S-mode address translation register (satp)

The S-mode address translation register (satp) controls MMU mode switching, hardware writeback base
address, and process ID.

This register is 64 bits wide and is readable and writable in S-mode. Accesses in U-mode will cause an
illegal instruction exception.

For more information, see ref:virtual_mem_manage_satp.

16.2.4 S-mode CPU control and status extension registers

16.2.4.1 S-mode extension status register (sxstatus)

The sxstatus register is the mapping of the mxstatus register. For more information, see
ref:appendix_c17_mxstatus.

This register is 64 bits wide and is readable in S-mode. Only the MM bit is writable. Accesses in
U-mode will cause an illegal instruction exception.

16.2.4.2 S-mode hardware control register (shcr)

The shcr register is the mapping of the mhcr register. For more information, see ref:appendix_c17_mhcr.

This register is 64 bits wide and is readable in S-mode. Accesses in U-mode will cause an illegal
instruction exception.

16.2.4.3 S-mode event overflow interrupt enable register (scounterinten)

The scounterinten register is the mapping of the mcounterinten register. For more information, see
ref:appendix_c17_mcounterinten.

This register is 64 bits wide and is readable in S-mode. Accesses in U-mode will cause an illegal
instruction exception.

When mcounterwen.bit[n] is 1, scounterinten.bit[n] determines whether to generate an interrupt when
the corresponding shpmcounter overflows.

www.t-head.cn 387

Chapter 16. Appendix C Control Registers

16.2.4.4 S-mode event overflow mark register (scounterof)

The scounterof register is the mapping of the mcounterof register. For more information, see
ref:appendix_c17_mcounterof.

This register is 64 bits wide and is readable in S-mode. Accesses in U-mode will cause an illegal
instruction exception.

When mcounterwen.bit[n] is 1, scounterof.bit[n] indicates whether the corresponding shpmcounter over-
flows.

16.2.4.5 S-mode cycle counter (scycle)

The scycle counter stores the cycles executed by the CPU. When the CPU is in the execution state (non-low
power state), the scycle register increases the count upon each execution cycle.

The mcycle counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_cont.

16.2.4.6 S-mode instructions-retired counter (sinstret)

The sinstret counter stores the number of retired instructions of the CPU. The sinstret register increases the
count when each instruction retires.

The sinstret counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_cont.

16.2.4.7 S-mode event counter (shpmcountern)

The shpmcountern counter is the mapping of the mhpmcountern counter.

For more information, see ref:performance_test_cont.

16.2.5 S-mode MMU extension register

C910 extends MMU related registers to implement software writeback. Software can directly write and read
the TLB.

16.2.5.1 S-mode MMU control register (smcir)

This register is 64 bits wide and is readable in S-mode. Accesses in U-mode will cause an illegal instruction
exception.

For more information, see ref:virtual_mem_manage_smcir.

www.t-head.cn 388

Chapter 16. Appendix C Control Registers

16.2.5.2 S-mode MMU control register (smir)

This register is 64 bits wide and is readable in S-mode. Accesses in U-mode will cause an illegal instruction
exception.

For more information, see ref:virtual_mem_manage_smir.

16.2.5.3 S-mode MMU control register (smeh)

This register is 64 bits wide and is readable in S-mode. Accesses in U-mode will cause an illegal instruction
exception.

For more information, see ref:virtual_mem_manage_smeh.

16.2.5.4 S-mode MMU control register (smel)

This register is 64 bits wide and is readable in S-mode. Accesses in U-mode will cause an illegal instruction
exception.

For more information, see ref:virtual_mem_manage_smel.

16.3 Appendix C-3 U-mode control registers

U-mode control registers are classified by function into floating-point registers, counter registers, and vector
control registers.

16.3.1 U-mode floating-point control registers

16.3.1.1 Floating-point accrued exceptions register (fflags)

The fflags register is the mapping of accrued exceptions of the fcsr register. For more information, see
ref:appendix_c31_fcsr.

16.3.1.2 Floating-point dynamic rounding mode register (frm)

The frm register is the mapping of the rounding mode of the fcsr register. For more information, see
ref:appendix_c31_fcsr.

16.3.1.3 Floating-point control and status register (fcsr)

The fcsr register records floating-point accrued exceptions and the rounding mode.

This register is 64 bits wide and readable and writable in any mode.

www.t-head.cn 389

Chapter 16. Appendix C Control Registers

Floating-point control and status register (fcsr)

NX: imprecise exception

• When NX is 0, no imprecise exception occurs.

When NX is 1, imprecise exceptions occur.

UF: underflow exception

• When UF is 0, no underflow exception occurs.

• When UF is 1, underflow exceptions occur.

OF: overflow exception

• When OF is 0, no overflow exception occurs.

• When OF is 1, overflow exceptions occur.

DZ: division by zero exception

• When DZ is 0, no division by zero exception occurs.

• When DZ is 1, division by zero exceptions occur.

NV: illegal instruction operand exception

• When NV is 0, no exception of illegal instruction operands occurs.

• When NV is 1, exceptions of illegal instruction operands occur.

RM: rounding mode

• When RM is 0, the RNE rounding mode takes effect, and values are rounded off to the nearest even
number.

• When RM is 1, the RTZ rounding mode takes effect, and values are rounded off to zero.

• When RM is 2, the RDN rounding mode takes effect, and values are rounded off to negative infinity.

• When RM is 3, the RUP rounding mode takes effect, and values are rounded off to positive infinity.

• When RM is 4, the RMM rounding mode takes effect, and values are rounded off to the nearest number.

www.t-head.cn 390

Chapter 16. Appendix C Control Registers

VXSAT: vector overflow flag bit

This register is the mapping of the corresponding bit.

VXRM: vector rounding mode bit

This register is the mapping of the corresponding bit.

16.3.2 U-mode counter/timer registers

16.3.2.1 User cycle register (cycle)

The cycle register stores the cycles executed by the CPU. When the CPU is in the execution state (non-low
power state), the cycle register increases the count upon each execution cycle.

The mcycle counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_cont.

16.3.2.2 U-mode timer register (time)

The time register is the read-only mapping of the mtime register.

For more information, see ref:performance_test_cont.

16.3.2.3 User instructions-retired counter (instret)

The instret counter stores the number of retired instructions of the CPU. The instret register increases the
count when each instruction retires.

The sinstret counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_cont.

16.3.2.4 User event counter (hpmcountern)

The hpmcountern counter is the mapping of the mhpmcountern counter.

For more information, see ref:performance_test_cont.

16.3.3 U-mode floating-point extension control registers

16.3.3.1 U-mode floating-point extension control register (fxcr)

The fxcr register controls the floating-point extension function and floating-point exception accrue bit.

www.t-head.cn 391

Chapter 16. Appendix C Control Registers

Floating-point extension control register (fxcr)

NX: imprecise exception

It is the mapping of the corresponding bit of the fcsr register.

UF: underflow exception

It is the mapping of the corresponding bit of the fcsr register.

OF: overflow exception

It is the mapping of the corresponding bit of the fcsr register.

DZ: division by zero exception

It is the mapping of the corresponding bit of the fcsr register.

NV: illegal instruction operand exception

It is the mapping of the corresponding bit of the fcsr register.

FE: floating-point exception accrue bit

This bit is set to 1 when any floating-point exception occurs.

DQNaN: output QNaN mode bit

When DQNaN is 0, the output QNaN value is the default value.

When DQNaN is 1, the output QNaN value is consistent with the IEEE754 standard.

RM: rounding mode

It is the mapping of the corresponding bit of the fcsr register.

www.t-head.cn 392

	1 Overview
	1.1 Introduction
	1.2 Features
	1.2.1 Architectural features of C910MP
	1.2.2 Features of the C910 core

	1.3 Configurations
	1.4 XuanTie extended architecture
	1.5 Version compatibility
	1.6 Naming conventions
	1.6.1 Terms

	2 C910MP Overview
	2.1 Structure
	2.2 In-core subsystems
	2.2.1 IFU
	2.2.2 IDU
	2.2.3 Execution units
	2.2.4 LSU
	2.2.5 RTU
	2.2.6 MMU
	2.2.7 PMP

	2.3 Multi-core subsystems
	2.3.1 CIU
	2.3.2 L2 cache
	2.3.3 Master device interface unit
	2.3.4 PLIC
	2.3.5 Timer

	2.4 Interface overview

	3 Instruction Sets
	3.1 RV base instruction sets
	3.1.1 Integer instruction set (RV64I)
	3.1.2 Multiply/Divide instruction set (RV64M)
	3.1.3 Atomic instruction set (RV64A)
	3.1.4 Single-precision floating-point instruction set (RV64F)
	3.1.5 Double-precision floating-point instruction set (RV64D)
	3.1.6 Compressed instruction set (RV64C)

	3.2 XuanTie extended instruction sets
	3.2.1 Arithmetic operation instructions
	3.2.2 Bit operation instructions
	3.2.3 Memory access instructions
	3.2.4 Cache instructions
	3.2.5 Multi-core synchronization instructions
	3.2.6 Half-precision floating-point instructions

	4 CPU Modes and Registers
	4.1 CPU modes
	4.2 Register view
	4.3 General-purpose registers
	4.4 Floating-point registers
	4.4.1 Transmit data between floating-point and general-purpose registers
	4.4.2 Maintain consistency of register precision

	4.5 System control registers
	4.5.1 Standard control registers
	4.5.2 Extended control registers

	4.6 Data formats
	4.6.1 Integer data format
	4.6.2 Floating-point data format

	4.7 Big-endian and little-endian

	5 Exceptions and Interrupts
	5.1 Overview
	5.2 Exceptions
	5.2.1 Exception handling
	5.2.2 Return from exceptions
	5.2.3 Imprecise exceptions

	5.3 Interrupts
	5.3.1 Interrupt priorities
	5.3.2 Interrupt responses
	5.3.3 Return from interrupts

	6 Memory Model
	6.1 Overview
	6.1.1 Memory attributes
	6.1.2 Memory ordering model

	6.2 MMU
	6.2.1 Overview
	6.2.2 TLB
	6.2.3 Address translation process
	6.2.4 System control registers
	6.2.4.1 Supervisor address translation and protection (satp) register
	6.2.4.2 smcir register
	6.2.4.3 smir register
	6.2.4.4 smeh register
	6.2.4.5 smel register

	6.3 PMP
	6.3.1 Overview
	6.3.2 PMP control registers
	6.3.2.1 Physical memory protection configuration (pmpcfg) register
	6.3.2.2 Physical memory protection address (pmpaddr) register

	6.4 Memory access order

	7 Memory Subsystem
	7.1 Memory Subsystem Overview
	7.2 L1 I-Cache
	7.2.1 Overview
	7.2.2 Way prediction
	7.2.3 Loop acceleration buffer
	7.2.4 Branch history table
	7.2.5 Branch and jump target predictor
	7.2.6 Indirect branch predictor
	7.2.7 Return address predictor
	7.2.8 Fast jump target predictor

	7.3 L1 D-Cache
	7.3.1 Overview
	7.3.2 Cache coherence
	7.3.3 Exclusive access

	7.4 L2 Cache
	7.4.1 Overview
	7.4.2 Cache coherence
	7.4.3 Structure
	7.4.4 RAM latency

	7.5 Accelerated memory access
	7.5.1 Instruction prefetch of the L1 I-Cache
	7.5.2 Multi-channel data prefetch of the L1 D-Cache
	7.5.3 L1 adaptive write allocation mechanism
	7.5.4 L2 prefetch mechanism

	7.6 L1/L2 cache operation instructions and registers
	7.6.1 Extended registers of the L1 cache
	7.6.2 Extended registers of the L2 cache
	7.6.3 L1/L2 cache operation instructions

	8 Interrupt Controllers
	8.1 Core local interrupt (CLINT) controller
	8.1.1 CLINT register address mapping
	8.1.2 Software interrupts
	8.1.3 Timer interrupts

	8.2 Platform-level interrupt controller (PLIC)
	8.2.1 Interrupt arbitration
	8.2.2 Interrupt request and response
	8.2.3 Interrupt completion
	8.2.4 PLIC register address mapping
	8.2.5 PLIC_PRIO register
	8.2.6 PLIC_IP register
	8.2.7 PLIC_IE register
	8.2.8 PLIC_PER register
	8.2.9 PLIC_TH register
	8.2.10 PLIC_CLAIM register

	8.3 Multi-core interrupts
	8.3.1 Multiple cores respond to external interrupts in parallel
	8.3.2 Send software interrupts across cores

	9 Bus Interface
	9.1 AXI master device interface
	9.1.1 Features of the AXI master device interface
	9.1.2 Outstanding capability of the AXI master device interface
	9.1.3 Supported transmission types
	9.1.4 Supported response types
	9.1.5 CPU behavior in different bus responses
	9.1.6 Signals supported by the AXI master device interface

	10 Debug
	10.1 Features of the debug unit
	10.2 Connection between the debug unit and CPU cores
	10.3 Debug interface signals

	11 Power Management
	11.1 Power domain
	11.2 Overview of low-power modes
	11.3 Core WFI process
	11.4 Individual-core power-off process
	11.5 Cluster power-off process (hardware clearing of the L2 cache)
	11.6 Cluster power-off process (software clearing of the L2 cache)
	11.7 Simplified scenario: overall cluster power-off process (hardware clearing of the L2 cache)
	11.8 Simplified scenario: overall cluster power-off process (software clearing of the L2 cache)
	11.9 Low power consumption related programming models and interface signals
	11.9.1 Programming models
	11.9.2 Interface signals

	12 Performance Monitoring Unit
	12.1 PMU overview
	12.2 PMU programming model
	12.2.1 PMU functions
	12.2.2 PMU event overflow interrupt

	12.3 PMU related control registers
	12.3.1 M-mode counter access enable register (mcounteren)
	12.3.2 S-mode counter access enable register (scounteren)
	12.3.3 M-mode count inhibit register (mcountinhibit)
	12.3.4 S-mode write enable register (mcounterwen)
	12.3.5 Performance monitoring event select register (mhpmevent3-31)
	12.3.6 Event counters

	13 Program Examples
	13.1 Optimal CPU performance configuration
	13.2 MMU setting example
	13.3 PMP setting example
	13.4 Cache examples
	13.4.1 Cache enabling example
	13.4.2 Example of synchronization between the instruction and data caches
	13.4.3 Example of synchronization between the TLB and the data cache

	13.5 Synchronization primitive examples
	13.6 PLIC setting example
	13.7 PMU setting example

	14 Appendix A Standard Instructions
	14.1 Appendix A-1 I instructions
	14.1.1 ADD: a signed add instruction
	14.1.2 ADDI: a signed add immediate instruction
	14.1.3 ADDIW: a signed add immediate instruction that operates on the lower 32 bits
	14.1.4 ADDW: a signed add instruction that operates on the lower 32 bits
	14.1.5 AND: a bitwise AND instruction
	14.1.6 ANDI: an immediate bitwise AND instruction
	14.1.7 AUIPC: an instruction that adds the immediate in the upper bits to the PC
	14.1.8 BEQ: a branch-if-equal instruction
	14.1.9 BGE: a signed branch-if-greater-than-or-equal instruction
	14.1.10 BGEU: an unsigned branch-if-greater-than-or-equal instruction
	14.1.11 BLT: a signed branch-if-less-than instruction
	14.1.12 BLTU: an unsigned branch-if-less-than instruction
	14.1.13 BNE: a branch-if-not-equal instruction
	14.1.14 CSRRC: a move instruction that clears control registers
	14.1.15 CSRRCI: a move instruction that clears immediates in control registers
	14.1.16 CSRRS: a move instruction for setting control registers
	14.1.17 CSRRSI: a move instruction for setting immediates in control registers
	14.1.18 CSRRW: a move instruction that reads/writes control registers
	14.1.19 CSRRWI: a move instruction that reads/writes immediates in control registers
	14.1.20 EBREAK: a breakpoint instruction
	14.1.21 ECALL: an environment call instruction
	14.1.22 FENCE: a memory synchronization instruction
	14.1.23 FENCE.I: an instruction stream synchronization instruction
	14.1.24 JAL: an instruction for directly jumping to a subroutine
	14.1.25 JALR: an instruction for jumping to a subroutine by using an address in a register
	14.1.26 LB: a sign-extended byte load instruction
	14.1.27 LBU: an unsign-extended byte load instruction
	14.1.28 LD: a doubleword load instruction
	14.1.29 LH: a sign-extended halfword load instruction
	14.1.30 LHU: an unsign-extended halfword load instruction
	14.1.31 LUI: an instruction for loading the immediate in the upper bits
	14.1.32 LW: a sign-extended word load instruction
	14.1.33 LWU: an unsign-extended word load instruction
	14.1.34 MRET: an instruction for returning from exceptions in M-mode
	14.1.35 OR: a bitwise OR instruction
	14.1.36 ORI: an immediate bitwise OR instruction
	14.1.37 SB: a byte store instruction
	14.1.38 SD: a doubleword store instruction
	14.1.39 SFENCE.VMA: a virtual memory synchronization instruction
	14.1.40 SH: a halfword store instruction
	14.1.41 SLL: a logical left shift instruction
	14.1.42 SLLI: an immediate logical left shift instruction
	14.1.43 SLLIW: an immediate logical left shift instruction that operates on the lower 32 bits
	14.1.44 SLLW: a logical left shift instruction that operates on the lower 32 bits
	14.1.45 SLT: a signed set-if-less-than instruction
	14.1.46 SLTI: a signed set-if-less-than-immediate instruction
	14.1.47 SLTIU: an unsigned set-if-less-than-immediate instruction
	14.1.48 SLTU: an unsigned set-if-less-than instruction
	14.1.49 SRA: an arithmetic right shift instruction
	14.1.50 SRAI: an immediate arithmetic right shift instruction
	14.1.51 SLLIW: an immediate arithmetic right shift instruction that operates on the lower 32 bits
	14.1.52 SRAW: an arithmetic right shift instruction that operates on the lower 32 bits
	14.1.53 SRET: an instruction for returning from exceptions in S-mode
	14.1.54 SRL: a logical right shift instruction
	14.1.55 SRLI: an immediate logical right shift instruction
	14.1.56 SRLIW: an immediate logical right shift instruction that operates on the lower 32 bits
	14.1.57 SRLW: a logical right shift instruction that operates on the lower 32 bits
	14.1.58 SUB: a signed subtract instruction
	14.1.59 SUBW: a signed subtract instruction that operates on the lower 32 bits
	14.1.60 SW: a word store instruction
	14.1.61 WFI: an instruction for entering the low power mode
	14.1.62 XOR: a bitwise XOR instruction
	14.1.63 XORI: an immediate bitwise XOR instruction

	14.2 Appendix A-2 M instructions
	14.2.1 DIV: a signed divide instruction
	14.2.2 DIVU: an unsigned divide instruction
	14.2.3 DIVUW: an unsigned divide instruction that operates on the lower 32 bits
	14.2.4 DIVW: a signed divide instruction that operates on the lower 32 bits
	14.2.5 MUL: a signed multiply instruction
	14.2.6 MULH: a signed multiply instruction that extracts the upper bits
	14.2.7 MULHSU: a signed-unsigned multiply instruction that extracts the upper bits
	14.2.8 MULHU: an unsigned multiply instruction that extracts the upper bits
	14.2.9 MULW: a signed multiply instruction that operates on the lower 32 bits
	14.2.10 REM: a signed remainder instruction
	14.2.11 REMU: an unsigned remainder instruction
	14.2.12 REMUW: an unsigned remainder instruction that operates on the lower 32 bits
	14.2.13 REMW: a signed remainder instruction that operates on the lower 32 bits

	14.3 Appendix A-3 A instructions
	14.3.1 AMOADD.D: an atomic add instruction
	14.3.2 AMOADD.W: an atomic add instruction that operates on the lower 32 bits
	14.3.3 AMOAND.D: an atomic bitwise AND instruction
	14.3.4 AMOAND.W: an atomic bitwise AND instruction that operates on the lower 32 bits
	14.3.5 AMOMAX.D: an atomic signed MAX instruction
	14.3.6 AMOMAX.W: an atomic signed MAX instruction that operates on the lower 32 bits
	14.3.7 MOMAXU.DA: an atomic unsigned MAX instruction
	14.3.8 AMOMAXU.W: an atomic unsigned MAX instruction that operates on the lower 32 bits.
	14.3.9 AMOMIN.D: an atomic signed MIN instruction
	14.3.10 AMOMIN.W: an atomic signed MIN instruction that operates on the lower 32 bits
	14.3.11 AMOMINU.D: an atomic unsigned MIN instruction
	14.3.12 AMOMINU.W: an atomic unsigned MIN instruction that operates on the lower 32 bits
	14.3.13 AMOOR.D: an atomic bitwise OR instruction.
	14.3.14 AMOOR.W: an atomic bitwise OR instruction that operates on the lower 32 bits
	14.3.15 AMOSWAP.D: an atomic swap instruction
	14.3.16 AMOSWAP.W: an atomic swap instruction that operates on the lower 32 bits
	14.3.17 AMOXOR.D: an atomic bitwise XOR instruction
	14.3.18 AMOXOR.W: an atomic bitwise XOR instruction that operates on the lower 32 bits
	14.3.19 LR.D: a doubleword load-reserved instruction
	14.3.20 LR.W: a word load-reserved instruction
	14.3.21 SC.D: a doubleword store-conditional instruction
	14.3.22 SC.W: a word store-conditional instruction

	14.4 Appendix A-4 F instructions
	14.4.1 FADD.S: a single-precision floating-point add instruction
	14.4.2 FCLASS.S: a single-precision floating-point classify instruction
	14.4.3 FCVT.L.S: an instruction that converts a single-precision floating-point number into a signed long integer
	14.4.4 FCVT.LU.S: an instruction that converts a single-precision floating-point number into an unsigned long integer
	14.4.5 FCVT.S.L: an instruction that converts a signed long integer into a single-precision floating-point number
	14.4.6 FCVT.S.LU: an instruction that converts an unsigned long integer into a single-precision floating-point number
	14.4.7 FCVT.S.W: an instruction that converts a signed integer into a single-precision floating-point number
	14.4.8 FCVT.S.WU: an instruction that converts an unsigned integer into a single-precision floating-point number
	14.4.9 FCVT.W.S: an instruction that converts a single-precision floating-point number into a signed integer
	14.4.10 FCVT.WU.S: an instruction that converts a single-precision floating-point number into an unsigned integer
	14.4.11 FDIV.S: a single-precision floating-point divide instruction
	14.4.12 FEQ.S: a single-precision floating-point compare equal instruction
	14.4.13 FLE.S: a single-precision floating-point compare less than or equal to instruction
	14.4.14 FLT.S: a single-precision floating-point compare less than instruction
	14.4.15 FLW: a single-precision floating-point load instruction
	14.4.16 FMADD.S: a single-precision floating-point multiply-add instruction
	14.4.17 FMAX.S: a single-precision floating-point MAX instruction
	14.4.18 FMIN.S: a single-precision floating-point MIN instruction
	14.4.19 FMSUB.S: a single-precision floating-point multiply-subtract instruction
	14.4.20 FMUL.S: a single-precision floating-point multiply instruction
	14.4.21 FMV.W.X: a single-precision floating-point write move instruction
	14.4.22 FMV.X.H: a single-precision floating-point read move instruction
	14.4.23 FNMADD.S: a single-precision floating-point negate-(multiply-add) instruction
	14.4.24 FNMSUB.S: a single-precision floating-point negate-(multiply-subtract) instruction
	14.4.25 FSGNJ.S: a single-precision floating-point sign-injection instruction
	14.4.26 FSGNJN.S: a single-precision floating-point negate sign-injection instruction
	14.4.27 FSGNJX.S: a single-precision floating-point XOR sign-injection instruction
	14.4.28 FSQRT.S: a single-precision floating-point square-root instruction
	14.4.29 FSUB.S: a single-precision floating-point subtract instruction
	14.4.30 FSW: a single-precision floating-point store instruction

	14.5 Appendix A-5 D instructions
	14.5.1 FADD.D: a double-precision floating-point add instruction
	14.5.2 FCLASS.D: a double-precision floating-point classify instruction
	14.5.3 FCVT.D.L: an instruction that converts a signed long integer into a double-precision floating-point number
	14.5.4 FCVT.D.LU: an instruction that converts an unsigned long integer into a double-precision floating-point number
	14.5.5 FCVT.D.S: an instruction that converts a single-precision floating-point number into a double-precision floating-point number
	14.5.6 FCVT.D.W: an instruction that converts a signed integer into a double-precision floating-point number
	14.5.7 FCVT.D.WU: an instruction that converts an unsigned integer into a double-precision floating-point number
	14.5.8 FCVT.L.D: an instruction that converts a double-precision floating-point number into a signed long integer
	14.5.9 FCVT.LU.D: an instruction that converts a double-precision floating-point number into an unsigned long integer
	14.5.10 FCVT.S.D: an instruction that converts a double-precision floating-point number into a single-precision floating-point number
	14.5.11 FCVT.W.D: an instruction that converts a double-precision floating-point number into a signed integer
	14.5.12 FCVT.WU.D: an instruction that converts a double-precision floating-point number into an unsigned integer
	14.5.13 FDIV.D: a double-precision floating-point divide instruction
	14.5.14 FEQ.D: a double-precision floating-point compare equal instruction
	14.5.15 FLD: a double-precision floating-point load instruction
	14.5.16 FLE.D: a double-precision floating-point compare less than or equal to instruction
	14.5.17 FLT.D: a double-precision floating-point compare less than instruction
	14.5.18 FMADD.D: a double-precision floating-point multiply-add instruction
	14.5.19 FMAX.D: a double-precision floating-point MAX instruction
	14.5.20 FMIN.D: a double-precision floating-point MIN instruction
	14.5.21 FMSUB.D: a double-precision floating-point multiply-subtract instruction
	14.5.22 FMUL.D: a double-precision floating-point multiply instruction
	14.5.23 FMV.D.X: a double-precision floating-point write move instruction
	14.5.24 FMV.X.D: a double-precision floating-point read move instruction
	14.5.25 FNMADD.D: a double-precision floating-point negate-(multiply-add) instruction
	14.5.26 FNMSUB.D: a double-precision floating-point negate-(multiply-subtract) instruction
	14.5.27 FSD: a double-precision floating-point store instruction
	14.5.28 FSGNJ.D: a double-precision floating-point sign-injection instruction
	14.5.29 FSGNJN.D: a double-precision floating-point negate sign-injection instruction
	14.5.30 FSGNJX.D: a double-precision floating-point XOR sign-injection instruction
	14.5.31 FSQRT.D: a double-precision floating-point square-root instruction
	14.5.32 FSUB.D: a double-precision floating-point subtract instruction

	14.6 Appendix A-6 C Instructions
	14.6.1 C.ADD: a signed add instruction
	14.6.2 C.ADDI: a signed add immediate instruction
	14.6.3 C.ADDIW: an add immediate instruction that operates on the lower 32 bits
	14.6.4 C.ADDI4SPN: an instruction that adds an immediate scaled by 4 to the stack pointer
	14.6.5 C.ADDI16SP: an instruction that adds an immediate scaled by 16 to the stack pointer
	14.6.6 C.ADDW: a signed add instruction that operates on the lower 32 bits
	14.6.7 C.AND: a bitwise AND instruction
	14.6.8 C.ANDI: an immediate bitwise AND instruction
	14.6.9 C.BEQZ: a branch-if-equal-to-zero instruction
	14.6.10 C.BNEZ: a branch-if-not-equal-to-zero instruction
	14.6.11 C.EBREAK: a break instruction
	14.6.12 C.FLD: a floating-point load doubleword instruction
	14.6.13 C.FLDSP: a floating-point doubleword load stack instruction
	14.6.14 C.FSD: a floating-point store doubleword instruction
	14.6.15 C.FSDSP: a floating-point store doubleword stack pointer instruction
	14.6.16 C.J: a unconditional jump instruction
	14.6.17 C.JALR: a jump and link register instruction
	14.6.18 C.JR: a jump register instruction
	14.6.19 C.LD: a load doubleword instruction
	14.6.20 C.LDSP: a load doubleword instruction
	14.6.21 C.LI: a load immediate instruction
	14.6.22 C.LUI: a load upper immediate instruction
	14.6.23 C.LW: a load word instruction
	14.6.24 C.LWSP: a load word stack pointer instruction
	14.6.25 C.MV: an instruction that copies the value in rs to rd
	14.6.26 C.NOP: a no-operation instruction
	14.6.27 C.OR: a bitwise OR instruction
	14.6.28 C.SD: a store doubleword instruction
	14.6.29 C.SDSP: a store doubleword stack pointer instruction
	14.6.30 C.SLLI: an immediate logical left shift instruction
	14.6.31 C.SRAI: a right shift arithmetic immediate instruction
	14.6.32 C.SRLI: an immediate right shift instruction
	14.6.33 C.SW: a store word instruction
	14.6.34 C.SWSP: a store word stack pointer instruction
	14.6.35 C.SUB: a signed subtract instruction
	14.6.36 C.SUBW: a signed subtract instruction that operates on the lower 32 bits
	14.6.37 C.XOR: a bitwise XOR instruction

	14.7 Appendix A-8 Pseudo instructions

	15 Appendix B T-Head Extended Instructions
	15.1 Appendix B-1 Cache instructions
	15.1.1 DCACHE.CALL: an instruction that clears all dirty page table entries in the D-Cache
	15.1.2 DCACHE.CIALL: an instruction that clears all dirty page table entries in the D-Cache and invalidates the D-Cache
	15.1.3 DCACHE.CIPA: clears dirty page table entries that match the specified physical addresses from the D-Cache and invalidates the the D-Cache
	15.1.4 DCACHE.CISW: an instruction that clears dirty page table entries in the D-Cache based on the specified way and set and invalidates the D-Cache
	15.1.5 DCACHE.CIVA: an instruction that clears dirty page table entries that match the specified virtual addresses in the D-Cache and invalidates the D-Cache
	15.1.6 DCACHE.CPA: an instruction that clears dirty page table entries that match the specified physical addresses from the D-Cache
	15.1.7 DCACHE.CPAL1: an instruction that clears dirty page table entries that match the specified physical addresses from the L1 D-Cache
	15.1.8 DCACHE.CVA: an instruction that clears dirty page table entries that match the specified virtual addresses in the D-Cache
	15.1.9 DCACHE.CVAL1: an instruction that clears dirty page table entries that match the specified virtual addresses in the L1 D-Cache
	15.1.10 DCACHE.IPA: an instruction that invalidates page table entries that match the specified physical addresses in the D-Cache
	15.1.11 DCACHE.ISW: an instruction that invalidates page table entries in the D-Cache based on the specified way and set and invalidates the D-Cache
	15.1.12 DCACHE.IVA: an instruction that invalidates the D-Cache based on the specified virtual address
	15.1.13 DCACHE.IALL: an instruction that invalidates all page table entries in the D-Cache.
	15.1.14 ICACHE.IALL: an instruction that invalidates all page table entries in the I-Cache
	15.1.15 ICACHE.IALLS: an instruction that invalidates all page table entries in the I-Cache through broadcasting
	15.1.16 ICACHE.IPA: an instruction that invalidates page table entries that match the specified physical addresses in the I-Cache
	15.1.17 ICACHE.IVA: an instruction that invalidates page table entries that match the specified virtual addresses in the I-Cache
	15.1.18 L2CACHE.CALL: an instruction that clears all dirty page table entries in the L2 Cache
	15.1.19 L2CACHE.CIALL: an instruction that clears all dirty page table entries in the L2 Cache and invalidates the L2 Cache
	15.1.20 L2CACHE.IALL: an instruction that invalidates the L2 Cache
	15.1.21 DCACHE.CSW: an instruction that clears dirty page table entries in the D-Cache based on the specified set and way

	15.2 Appendix B-2 Multi-core synchronization instructions
	15.2.1 SFENCE.VMAS: a broadcast instruction that synchronizes the virtual memory address
	15.2.2 SYNC: an instruction that performs the synchronization operation
	15.2.3 SYNC.I: an instruction that synchronizes the clearing operation.
	15.2.4 SYNC.IS: a broadcast instruction that synchronizes the clearing operation
	15.2.5 SYNC.S: a broadcast instruction that performs a synchronization operation

	15.3 Appendix B-3 Arithmetic operation instructions
	15.3.1 ADDSL: an add register instruction that shifts registers
	15.3.2 MULA: a multiply-add instruction
	15.3.3 MULAH: a multiply-add instruction that operates on the lower 16 bits
	15.3.4 MULAW: a multiply-add instruction that operates on the lower 32 bits
	15.3.5 MULS: a multiply-subtract instruction
	15.3.6 MULSH: a multiply-subtract instruction that operates on the lower 16 bits
	15.3.7 MULSW: a multiply-subtract instruction that operates on the lower 32 bits
	15.3.8 MVEQZ: an instruction that sends a message when the register is 0
	15.3.9 MVNEZ: an instruction that sends a message when the register is not 0
	15.3.10 SRRI: an instruction that implements a cyclic right shift operation on a linked list
	15.3.11 SRRIW: an instruction that implements a cyclic right shift operation on a linked list of low 32 bits of registers.

	15.4 Appendix B-4 Bitwise operation instructions
	15.4.1 EXT: a signed extension instruction that extracts consecutive bits of a register
	15.4.2 EXTU: a zero extension instruction that extracts consecutive bits of a register
	15.4.3 FF0: an instruction that finds the first bit with the value of 0 in a register
	15.4.4 FF1: an instruction that finds the bit with the value of 1
	15.4.5 REV: an instruction that reverses the byte order in a word stored in the register
	15.4.6 REVW: an instruction that reverses the byte order in a low 32-bit word
	15.4.7 TST: an instruction that tests bits with the value of 0
	15.4.8 TSTNBZ: an instruction that tests bytes with the value of 0

	15.5 Appendix B-5 Storage instructions
	15.5.1 FLRD: a load doubleword instruction that shifts floating-point registers
	15.5.2 FLRW: a load word instruction that shifts floating-point registers
	15.5.3 FLURD: a load doubleword instruction that shifts low 32 bits of floating-point registers
	15.5.4 FLURW: a load word instruction that shifts low 32 bits of floating-point registers
	15.5.5 FSRD: a store doubleword instruction that shifts floating-point registers
	15.5.6 FSRW: a store word instruction that shifts floating-point registers.
	15.5.7 FSURD: a store doubleword instruction that shifts low 32 bits of floating-point registers
	15.5.8 FSURW: a store word instruction that shifts low 32 bits of floating-point registers
	15.5.9 LBIA: a base-address auto-increment instruction that extends signed bits and loads bytes
	15.5.10 LBIB: a load byte instruction that auto-increments the base address and extends signed bits
	15.5.11 LBUIA: a base-address auto-increment instruction that extends zero bits and loads bytes
	15.5.12 LBUIB: a load byte instruction that auto-increments the base address and extends zero bits
	15.5.13 LDD: an instruction that loads double registers
	15.5.14 LDIA: a base-address auto-increment instruction that loads doublewords and extends signed bits
	15.5.15 LDIB: a load doubleword instruction that auto-increments the base address and extends the signed bits
	15.5.16 LHIA: a base-address auto-increment instruction that loads halfwords and extends signed bits
	15.5.17 LHIB: a load halfword instruction that auto-increments the base address and extends signed bits
	15.5.18 LHUIA: a base-address auto-increment instruction that extends zero bits and loads halfwords
	15.5.19 LHUIB: a load halfword instruction that auto-increments the base address and extends zero bits
	15.5.20 LRB: a load byte instruction that shifts registers and extends signed bits
	15.5.21 LRBU: a load byte instruction that shifts registers and extends zero bits
	15.5.22 LRD: a load doubleword instruction that shifts registers
	15.5.23 LRH: a load halfword instruction that shifts registers and extends signed bits
	15.5.24 LRHU: a load halfword instruction that shifts registers and extends zero bits
	15.5.25 LRW: a load word instruction that shifts registers and extends signed bits
	15.5.26 LRWU: a load word instruction that shifts registers and extends zero bits
	15.5.27 LURB: a load byte instruction that shifts low 32 bits of registers and extends signed bits
	15.5.28 LURBU: a load byte instruction that shifts low 32 bits of registers and extends zero bits
	15.5.29 LURD: a load doubleword instruction that shifts low 32 bits of registers
	15.5.30 LURH: a load halfword instruction that shifts low 32 bits of registers and extends signed bits
	15.5.31 LURHU: a load halfword instruction that shifts low 32 bits of registers and extends zero bits
	15.5.32 LURW: a load word instruction that shifts low 32 bits of registers and extends signed bits
	15.5.33 LURWU: a load word instruction that shifts 32 bits of registers and extends zero bits
	15.5.34 LWD: a load word instruction that loads double registers and extends signed bits
	15.5.35 LWIA: a base-address auto-increment instruction that extends signed bits and loads words
	15.5.36 LWIB: a load word instruction that auto-increments the base address and extends signed bits
	15.5.37 LWUD: a load word instruction that loads double registers and extends zero bits
	15.5.38 LWUIA: a base-address auto-increment instruction that extends zero bits and loads words
	15.5.39 LWUIB: a load word instruction that auto-increments the base address and extends zero bits
	15.5.40 SBIA: a base-address auto-increment instruction that stores bytes
	15.5.41 SBIB: a store byte instruction that auto-increments the base address
	15.5.42 SDD: an instruction that stores double registers
	15.5.43 SDIA: a base-address auto-increment instruction that stores doublewords
	15.5.44 SDIB: a store doubleword instruction that auto-increments the base address
	15.5.45 SHIA: a base-address auto-increment instruction that stores halfwords
	15.5.46 SHIB: a store halfword instruction that auto-increments the base address
	15.5.47 SRB: a store byte instruction that shifts registers
	15.5.48 SRD: a store doubleword instruction that shifts registers
	15.5.49 SRH: a store halfword instruction that shifts registers
	15.5.50 SRW: a store word instruction that shifts registers
	15.5.51 SURB: a store byte instruction that shifts low 32 bits of registers
	15.5.52 SURD: a store doubleword instruction that shifts low 32 bits of registers
	15.5.53 SURH: a store halfword instruction that shifts low 32 bits of registers
	15.5.54 SURW: a store word instruction that shifts low 32 bits of registers
	15.5.55 SWIA: a base-address auto-increment instruction that stores words
	15.5.56 SWIB: a store word instruction that auto-increments the base address
	15.5.57 SWD: an instruction that stores the low 32 bits of double registers

	15.6 Appendix B-6 Half-precision floating-point instructions
	15.6.1 FADD.H: a half-precision floating-point add instruction
	15.6.2 FCLASS.H: a half-precision floating-point classification instruction
	15.6.3 FCVT.D.H: an instruction that converts half-precision floating-point data to double-precision floating-point data
	15.6.4 FCVT.H.D: an instruction that converts double-precision floating-point data to half-precision floating-point data
	15.6.5 FCVT.H.L: an instruction that converts a signed long integer into a half-precision floating-point number
	15.6.6 FCVT.H.LU: an instruction that converts an unsigned long integer into a half-precision floating-point number
	15.6.7 FCVT.H.S: an instruction that converts single precision floating-point data to half-precision floating-point data
	15.6.8 FCVT.H.W: an instruction that converts a signed integer into a half-precision floating-point number
	15.6.9 FCVT.H.WU: an instruction that converts an unsigned integer into a half-precision floating-point number
	15.6.10 FCVT.L.H: an instruction that converts a half-precision floating-point number to a signed long integer
	15.6.11 FCVT.LU.H: an instruction that converts a half-precision floating-point number to an unsigned long integer
	15.6.12 FCVT.S.H: an instruction that converts half-precision floating-point data to single precision floating-point data
	15.6.13 FCVT.W.H: an instruction that converts a half-precision floating-point number to a signed integer
	15.6.14 FCVT.WU.H: an instruction that converts a half-precision floating-point number to an unsigned integer
	15.6.15 FDIV.H: a half-precision floating-point division instruction
	15.6.16 FEQ.H: an equal instruction that compares two half-precision numbers
	15.6.17 FLE.H: a less than or equal to instruction that compares two half-precision floating-point numbers
	15.6.18 FLH: an instruction that loads half-precision floating-point data
	15.6.19 FLT.H: a less than instruction that compares two half-precision floating-point numbers
	15.6.20 FMADD.H: a half-precision floating-point multiply-add instruction
	15.6.21 FMAX.H: a half-precision floating-point maximum instruction
	15.6.22 FMIN.H: a half-precision floating-point minimum instruction
	15.6.23 FMSUB.H: a half-precision floating-point multiply-subtract instruction
	15.6.24 FMUL.H: a half-precision floating-point multiply instruction
	15.6.25 FMV.H.X: a half-precision floating-point write transmit instruction
	15.6.26 FMV.X.H: a transmission instruction that reads half-precision floating-point registers
	15.6.27 FNMADD.H: a half-precision floating-point negate-(multiply-add) instruction
	15.6.28 FNMSUB.H: a half-precision floating-point negate-(multiply-subtract) instruction
	15.6.29 FSGNJ.H: a half-precision floating-point sign-injection instruction
	15.6.30 FSGNJN.H: a half-precision floating-point sign-injection negate instruction
	15.6.31 FSGNJX.H: a half-precision floating-point sign-injection XOR instruction
	15.6.32 FSH: an instruction that stores half-precision floating point numbers
	15.6.33 FSQRT.H: an instruction that calculates the square root of the half-precision floating-point number
	15.6.34 FSUB.H: a half-precision floating-point subtract instruction

	16 Appendix C Control Registers
	16.1 Appendix C-1 M-mode control registers
	16.1.1 M-mode information register group
	16.1.1.1 Machine vendor ID register (mvendorid)
	16.1.1.2 Machine architecture ID register (marchid)
	16.1.1.3 Machine implementation ID register (mimpid)
	16.1.1.4 Machine hart ID register (mhartid)

	16.1.2 M-mode exception configuration register group
	16.1.2.1 Machine status register (mstatus)
	16.1.2.2 M-mode instruction set architecture register (misa)
	16.1.2.3 M-mode exception downgrade control register (medeleg)
	16.1.2.4 M-mode interrupt downgrade control register (mideleg)
	16.1.2.5 M-mode interrupt-enable register (mie)
	16.1.2.6 M-mode trap vector base address register (mtvec)
	16.1.2.7 M-mode counter access enable register (mcounteren)

	16.1.3 M-mode exception handling register group
	16.1.3.1 M-mode scratch register (mscratch)
	16.1.3.2 M-mode exception program counter register (mepc)
	16.1.3.3 M-mode cause register (mcause)
	16.1.3.4 M-mode interrupt-pending register (mip)

	16.1.4 M-mode memory protection registers
	16.1.4.1 Physical memory protection configuration register (pmpcfg)
	16.1.4.2 Physical memory address register (pmpaddr)

	16.1.5 M-mode counter registers
	16.1.5.1 M-mode cycle counter (mcycle)
	16.1.5.2 M-mode instructions-retired counter (minstret)
	16.1.5.3 M-mode event counter (mhpmcountern)

	16.1.6 M-mode counter configuration registers
	16.1.6.1 M-mode event selector (mhpmeventn)

	16.1.7 M-mode CPU control and status extension registers
	16.1.7.1 M-mode extension status register (mxstatus)
	16.1.7.2 M-mode hardware configuration register (mhcr)
	16.1.7.3 M-mode hardware operation register (mcor)
	16.1.7.4 M-mode L2 Cache control register (mccr2)
	16.1.7.5 M-mode implicit operation register (mhint)
	16.1.7.6 M-mode reset vector base address register (mrvbr)
	16.1.7.7 S-mode counter write enable register (mcounterwen)
	16.1.7.8 M-mode event interrupt enable register (mcounterinten)
	16.1.7.9 M-mode event overflow mark register (mcounteren)

	16.1.8 M-mode cache access extension registers
	16.1.8.1 M-mode cache instruction register (mcins)
	16.1.8.2 M-mode cache access index register (mcindex)
	16.1.8.3 M-mode cache data register (mcdata0/1)

	16.1.9 M-mode CPU model registers
	16.1.9.1 M-mode CPU model register (mcpuid)
	16.1.9.2 On-chip bus base address register (mapbaddr)

	16.1.10 Multi-core extension registers
	16.1.10.1 Snoop listening enable register (msmpr)

	16.2 Appendix C-2 S-mode control registers
	16.2.1 S-mode exception configuration registers
	16.2.1.1 S-mode status register (sstatus)
	16.2.1.2 S-mode interrupt-enable register (sie)
	16.2.1.3 S-mode trap vector base address register (stvec)
	16.2.1.4 S-mode counter access enable register (scounteren)

	16.2.2 S-mode exception handling registers
	16.2.2.1 S-mode scratch register (sscratch)
	16.2.2.2 S-mode exception program counter register (sepc)
	16.2.2.3 S-mode cause register (scause)
	16.2.2.4 S-mode interrupt-pending register (sip)

	16.2.3 S-mode address translation registers
	16.2.3.1 S-mode address translation register (satp)

	16.2.4 S-mode CPU control and status extension registers
	16.2.4.1 S-mode extension status register (sxstatus)
	16.2.4.2 S-mode hardware control register (shcr)
	16.2.4.3 S-mode event overflow interrupt enable register (scounterinten)
	16.2.4.4 S-mode event overflow mark register (scounterof)
	16.2.4.5 S-mode cycle counter (scycle)
	16.2.4.6 S-mode instructions-retired counter (sinstret)
	16.2.4.7 S-mode event counter (shpmcountern)

	16.2.5 S-mode MMU extension register
	16.2.5.1 S-mode MMU control register (smcir)
	16.2.5.2 S-mode MMU control register (smir)
	16.2.5.3 S-mode MMU control register (smeh)
	16.2.5.4 S-mode MMU control register (smel)

	16.3 Appendix C-3 U-mode control registers
	16.3.1 U-mode floating-point control registers
	16.3.1.1 Floating-point accrued exceptions register (fflags)
	16.3.1.2 Floating-point dynamic rounding mode register (frm)
	16.3.1.3 Floating-point control and status register (fcsr)

	16.3.2 U-mode counter/timer registers
	16.3.2.1 User cycle register (cycle)
	16.3.2.2 U-mode timer register (time)
	16.3.2.3 User instructions-retired counter (instret)
	16.3.2.4 User event counter (hpmcountern)

	16.3.3 U-mode floating-point extension control registers
	16.3.3.1 U-mode floating-point extension control register (fxcr)

