
XuanTie-C908-UserManual

Nov 06, 2023

Copyright 2021 T-Head Semiconductor Co., Ltd.

Licensed under the Apache License, Version 2.0 (the ”License”); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed
on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the License.

History
Version Description Date

01 C908 first version 2021.10.19
02 change pmpaddr table 2021.10.25
03 second version 2023.08.23

i

XuanTie-C908-UserManual

1 Introduction 1
1.1 Features . 1

1.1.1 Features of C908MP Architectural . 1
1.1.2 Features of C908 Core . 2
1.1.3 Features of C908 vector computing units . 3

1.2 Configuration options . 3
1.3 XuanTie extended architecture . 6
1.4 Version compatibility . 6
1.5 Terms . 6

2 C908MP Overview 8
2.1 Structure . 8
2.2 In-core subsystems . 8

2.2.1 IFU . 8
2.2.2 IEU . 8
2.2.3 VFPU . 10
2.2.4 LSU . 10
2.2.5 MMU . 10
2.2.6 PMP . 11

2.3 Multi-core subsystems . 11
2.3.1 CIU . 11
2.3.2 L2 cache . 11
2.3.3 Master device interface unit . 11
2.3.4 DCP . 11
2.3.5 LLP . 12

2.4 Multi-cluster subsystems . 12
2.4.1 PIC . 12

ii

2.4.2 Timer . 12
2.4.3 Debug system . 12

2.5 Interface overview . 13

3 Instruction Sets 14
3.1 RV base instruction sets . 14

3.1.1 Integer instruction set (RV64I) . 14
3.1.2 Multiply/Divide instruction set (RV64M) . 17
3.1.3 Atomic instruction set (RV64A) . 18
3.1.4 Single-precision floating-point instruction set . 19
3.1.5 Compressed instruction set (RV64C) . 22
3.1.6 Vector instruction set (RVV) . 24
3.1.7 Bit operation instruction set (RV64B) . 24

3.2 XuanTie extended instruction sets . 24
3.2.1 Arithmetic operation instructions . 24
3.2.2 Bit operation instructions . 25
3.2.3 Memory access instructions . 26
3.2.4 Cache instructions . 31
3.2.5 Multi-core synchronization instructions . 33
3.2.6 Half-precision floating-point instructions . 33

4 CPU Modes and Registers 37
4.1 CPU modes . 37
4.2 Register view . 38
4.3 General-purpose registers . 38
4.4 Floating-point registers . 39

4.4.1 Transmit data between floating-point and general-purpose registers 40
4.4.2 Maintain consistency of register precision . 40

4.5 Vector registers . 40
4.5.1 Transmit data between floating-point and general-purpose registers 40
4.5.2 Transmit data between floating-point and vector registers 41

4.6 System control registers . 41
4.6.1 Standard control registers . 41
4.6.2 Extended control registers . 44

4.7 Data formats . 47
4.7.1 Integer data format . 47
4.7.2 Floating-point data format . 47

4.8 Big-endian and little-endian . 47

5 Exceptions and Interrupts 50
5.1 Overview . 50
5.2 Exceptions . 52

5.2.1 Exception handling . 52

iii

5.2.2 Return from exceptions . 53
5.3 Interrupts . 53

5.3.1 Interrupt priorities . 54
5.3.2 Interrupt responses . 54
5.3.3 Return from interrupts . 55
5.3.4 Asynchronous errors . 55

6 Memory Model 56
6.1 Overview . 56

6.1.1 Memory attributes . 56
6.2 SYSMAP configuration reference . 57

6.2.1 Memory ordering model . 59
6.3 MMU . 60

6.3.1 Overview . 60
6.3.2 TLB . 60
6.3.3 Page Table Format . 61
6.3.4 Address translation process . 63
6.3.5 System control registers . 64

6.3.5.1 Supervisor address translation and protection register (satp) 64
6.3.5.2 smcir register . 65
6.3.5.3 smir register . 66
6.3.5.4 MMU EntryHi register (smeh) . 67
6.3.5.5 MMU EntryLo register(smel) . 68

6.4 MMU Parity Checking . 68
6.5 PMP . 69

6.5.1 Overview . 69
6.5.2 PMP control registers . 69

6.5.2.1 Physical memory protection configuration register (pmpcfg) 69
6.5.2.2 Physical memory protection address register (pmpaddr) 72

6.6 Memory access order . 72

7 Memory Subsystem 74
7.1 Memory Subsystem Overview . 74
7.2 L1 I-Cache . 74

7.2.1 Overview . 74
7.2.2 Instruction prefetching . 75
7.2.3 Way prediction . 75
7.2.4 Loop acceleration buffer . 75
7.2.5 Branch history table . 76
7.2.6 Branch and jump target predictor . 76
7.2.7 Indirect branch predictor . 76
7.2.8 Return address predictor . 77

iv

7.2.9 Fast jump target predictor . 77
7.2.10 Parity Check Function . 78

7.3 L1 D-Cache . 78
7.3.1 Overview . 78
7.3.2 Cache coherence . 79
7.3.3 Exclusive access . 79

7.4 L2 Cache . 80
7.4.1 Overview . 80
7.4.2 Cache coherence . 80
7.4.3 Structure . 81
7.4.4 RAM latency . 81

7.5 Accelerated memory access . 83
7.5.1 Instruction prefetch of the L1 I-Cache . 83
7.5.2 Multi-channel data prefetch of the L1 D-Cache . 84
7.5.3 L1 adaptive write allocation mechanism . 84
7.5.4 L2 prefetch mechanism . 85

7.6 L1/L2 cache operation instructions and registers . 85
7.6.1 Extended registers of the L1 cache . 85
7.6.2 Extended registers of the L2 cache . 85
7.6.3 L1/L2 cache operation instructions . 86

8 Vector Computations 88
8.1 Vector programming model . 88
8.2 Vector control registers . 88
8.3 Vector exceptions . 89

9 Security Design 91
9.1 Security Requirements . 91
9.2 Processor Security Model . 91
9.3 System Security Architecture . 93

9.3.1 Secure memory management . 93
9.3.2 Secure interrupts . 96
9.3.3 Secure Access Control . 98
9.3.4 Secure Debugging . 100

10 Interrupt Controllers 101
10.1 Core local interrupt (CLINT) controller . 101

10.1.1 CLINT register address mapping . 101
10.1.2 Software interrupts . 103
10.1.3 CLINT timer . 104
10.1.4 Timer interrupts . 105

10.2 Platform-level interrupt controller (PLIC) . 106
10.2.1 Interrupt arbitration . 107

v

10.2.2 Interrupt request and response . 107
10.2.3 Interrupt completion . 108
10.2.4 PLIC register address mapping . 108
10.2.5 PLIC_PRIO register . 112
10.2.6 PLIC_IP register . 112
10.2.7 PLIC_IE register . 113
10.2.8 PLIC_CTRL register . 114
10.2.9 PLIC_TH register . 114
10.2.10 PLIC_CLAIM register . 115

10.3 Multi-core interrupts . 115
10.3.1 Multiple cores respond to external interrupts in parallel 115
10.3.2 Send software interrupts across cores . 116

11 Bus Interface 117
11.1 AXI master device interface . 117

11.1.1 Features of the AXI master device interface . 117
11.1.2 Outstanding capability of the AXI master device interface 117
11.1.3 Supported transmission types of Master Device . 119
11.1.4 Supported response types of Master Device . 119
11.1.5 CPU behavior in different bus responses . 120

11.2 Device coherence port . 120
11.2.1 Features of DCP . 120
11.2.2 Supported transfer types of DCP . 121
11.2.3 Supported response types of DCP . 121
11.2.4 Responses issued for different behaviors . 121

11.3 Low Latency Port . 121
11.3.1 Features of LLP . 122
11.3.2 Outstanding capabilities of LLP . 122
11.3.3 Supported transfer types of LLP . 123
11.3.4 Supported response types of LLP . 124

12 Debug 125
12.1 Features of the debug unit . 125
12.2 Debugging resource configuration . 126

13 Power Management 128
13.1 Power domain . 128
13.2 Overview of low-power modes . 128
13.3 Core WFI process . 129
13.4 Individual-core power-off process . 129
13.5 Cluster power-off process (hardware clearing of the L2 cache) 130
13.6 Simplified scenario: overall cluster power-off process (hardware clearing of the L2 cache) . . 131
13.7 Low power consumption related programming models and interface signals 132

vi

13.7.1 Changes in Programming models . 133
13.7.2 Interface signals . 133

14 Performance Monitoring Unit 134
14.1 PMU overview . 134
14.2 PMU programming model . 134

14.2.1 PMU functions . 134
14.2.2 PMU event overflow interrupt . 135

14.3 PMU related control registers . 135
14.3.1 M-mode counter access enable register (mcounteren) 135
14.3.2 S-mode counter access enable register (scounteren) 136
14.3.3 M-mode count inhibit register (mcountinhibit) . 137
14.3.4 S-mode count inhibit register (scountinhibit) . 138
14.3.5 S-mode write enable register (mcounterwen) . 139
14.3.6 Performance monitoring event select register (mhpmevent3-31) 139
14.3.7 Event counters . 144

15 Program Examples 147
15.1 Optimal performance configuration for CPU . 147
15.2 MMU setting examples . 148
15.3 PMP setting examples . 152
15.4 Cache setting example . 153

15.4.1 Example of enabling Cache . 153
15.4.2 Example of synchronization between I-Cache and D-Cache 154
15.4.3 Example of synchronization between TLB and D-Cache 155
15.4.4 Setting of L2 cache partition function . 155

15.5 Synchronization primitive setting example . 155
15.6 PLIC setting example . 156
15.7 PMU setting example . 157

16 Appendix A Standard Instructions 158
16.1 Appendix A-1 I instructions . 158

16.1.1 ADD: a signed add instruction . 158
16.1.2 ADDI: a signed add immediate instruction . 159
16.1.3 ADDIW: a signed add immediate instruction that operates on the lower 32 bits . . . 159
16.1.4 ADDW: a signed add instruction that operates on the lower 32 bits 160
16.1.5 AND: a bitwise AND instruction . 160
16.1.6 ANDI: an immediate bitwise AND instruction . 161
16.1.7 AUIPC: an instruction that adds the immediate in the upper bits to the PC 161
16.1.8 BEQ: a branch-if-equal instruction . 161
16.1.9 BGE: a signed branch-if-greater-than-or-equal instruction 162
16.1.10 BGEU: an unsigned branch-if-greater-than-or-equal instruction 163
16.1.11 BLT: a signed branch-if-less-than instruction . 164

vii

16.1.12 BLTU: an unsigned branch-if-less-than instruction 164
16.1.13 BNE: a branch-if-not-equal instruction . 165
16.1.14 CSRRC: a move instruction that clears control registers 166
16.1.15 CSRRCI: a move instruction that clears immediates in control registers 166
16.1.16 CSRRS: a move instruction for setting control registers 167
16.1.17 CSRRSI: a move instruction for setting immediates in control registers 167
16.1.18 CSRRW: a move instruction that reads/writes control registers 168
16.1.19 CSRRWI: a move instruction that reads/writes immediates in control registers . . . 169
16.1.20 EBREAK: a breakpoint instruction . 169
16.1.21 ECALL: an environment call instruction . 170
16.1.22 FENCE: a memory synchronization instruction . 170
16.1.23 FENCE.I: an instruction stream synchronization instruction 171
16.1.24 JAL: an instruction for directly jumping to a subroutine 171
16.1.25 JALR: an instruction for jumping to a subroutine by using an address in a register . 172
16.1.26 LB: a sign-extended byte load instruction . 172
16.1.27 LBU: an unsign-extended byte load instruction . 173
16.1.28 LD: a doubleword load instruction . 173
16.1.29 LH: a sign-extended halfword load instruction . 174
16.1.30 LHU: an unsign-extended halfword load instruction 174
16.1.31 LUI: an instruction for loading the immediate in the upper bits 175
16.1.32 LW: a sign-extended word load instruction . 175
16.1.33 LWU: an unsign-extended word load instruction . 176
16.1.34 MRET: an instruction for returning from exceptions in M-mode 176
16.1.35 OR: a bitwise OR instruction . 177
16.1.36 ORI: an immediate bitwise OR instruction . 177
16.1.37 SB: a byte store instruction . 177
16.1.38 SD: a doubleword store instruction . 178
16.1.39 SFENCE.VMA: a virtual memory synchronization instruction 178
16.1.40 SH: a halfword store instruction . 179
16.1.41 SLL: a logical left shift instruction . 180
16.1.42 SLLI: an immediate logical left shift instruction . 180
16.1.43 SLLIW: an immediate logical left shift instruction that operates on the lower 32 bits 181
16.1.44 SLLW: a logical left shift instruction that operates on the lower 32 bits 181
16.1.45 SLT: a signed set-if-less-than instruction . 182
16.1.46 SLTI: a signed set-if-less-than-immediate instruction 182
16.1.47 SLTIU: an unsigned set-if-less-than-immediate instruction 183
16.1.48 SLTU: an unsigned set-if-less-than instruction . 183
16.1.49 SRA: an arithmetic right shift instruction . 184
16.1.50 SRAI: an immediate arithmetic right shift instruction 184
16.1.51 SLLIW: an immediate arithmetic right shift instruction that operates on the lower

32 bits . 185
16.1.52 SRAW: an arithmetic right shift instruction that operates on the lower 32 bits 185

viii

16.1.53 SRET: an instruction for returning from exceptions in S-mode 186
16.1.54 SRL: a logical right shift instruction . 186
16.1.55 SRLI: an immediate logical right shift instruction . 186
16.1.56 SRLIW: an immediate logical right shift instruction that operates on the lower 32 bits187
16.1.57 SRLW: a logical right shift instruction that operates on the lower 32 bits 187
16.1.58 SUB: a signed subtract instruction . 188
16.1.59 SUBW: a signed subtract instruction that operates on the lower 32 bits 188
16.1.60 SW: a word store instruction . 189
16.1.61 WFI: an instruction for entering the low power mode 189
16.1.62 XOR: a bitwise XOR instruction . 190
16.1.63 XORI: an immediate bitwise XOR instruction . 190

16.2 Appendix A-2 M instructions . 190
16.2.1 DIV: a signed divide instruction . 191
16.2.2 DIVU: an unsigned divide instruction . 191
16.2.3 DIVUW: an unsigned divide instruction that operates on the lower 32 bits 192
16.2.4 DIVW: a signed divide instruction that operates on the lower 32 bits 192
16.2.5 MUL: a signed multiply instruction . 193
16.2.6 MULH: a signed multiply instruction that extracts the upper bits 193
16.2.7 MULHSU: a signed-unsigned multiply instruction that extracts the upper bits 193
16.2.8 MULHU: an unsigned multiply instruction that extracts the upper bits 194
16.2.9 MULW: a signed multiply instruction that operates on the lower 32 bits 194
16.2.10 REM: a signed remainder instruction . 195
16.2.11 REMU: an unsigned remainder instruction . 195
16.2.12 REMUW: an unsigned remainder instruction that operates on the lower 32 bits . . . 196
16.2.13 REMW: a signed remainder instruction that operates on the lower 32 bits 196

16.3 Appendix A-3 A instructions . 197
16.3.1 AMOADD.D: an atomic add instruction . 197
16.3.2 AMOADD.W: an atomic add instruction that operates on the lower 32 bits 198
16.3.3 AMOAND.D: an atomic bitwise AND instruction . 199
16.3.4 AMOAND.W: an atomic bitwise AND instruction that operates on the lower 32 bits 200
16.3.5 AMOMAX.D: an atomic signed MAX instruction . 201
16.3.6 AMOMAX.W: an atomic signed MAX instruction that operates on the lower 32 bits 202
16.3.7 MOMAXU.DA: an atomic unsigned MAX instruction 203
16.3.8 AMOMAXU.W: an atomic unsigned MAX instruction that operates on the lower 32

bits. 204
16.3.9 AMOMIN.D: an atomic signed MIN instruction . 205
16.3.10 AMOMIN.W: an atomic signed MIN instruction that operates on the lower 32 bits . 206
16.3.11 AMOMINU.D: an atomic unsigned MIN instruction 207
16.3.12 AMOMINU.W: an atomic unsigned MIN instruction that operates on the lower 32 bits208
16.3.13 AMOOR.D: an atomic bitwise OR instruction. 209
16.3.14 AMOOR.W: an atomic bitwise OR instruction that operates on the lower 32 bits . . 209
16.3.15 AMOSWAP.D: an atomic swap instruction . 210

ix

16.3.16 AMOSWAP.W: an atomic swap instruction that operates on the lower 32 bits 211
16.3.17 AMOXOR.D: an atomic bitwise XOR instruction . 212
16.3.18 AMOXOR.W: an atomic bitwise XOR instruction that operates on the lower 32 bits 213
16.3.19 LR.D: a doubleword load-reserved instruction . 214
16.3.20 LR.W: a word load-reserved instruction . 215
16.3.21 SC.D: a doubleword store-conditional instruction . 216
16.3.22 SC.W: a word store-conditional instruction . 217

16.4 Appendix A-4 F instructions . 218
16.4.1 FADD.S: a single-precision floating-point add instruction 218
16.4.2 FCLASS.S: a single-precision floating-point classify instruction 219
16.4.3 FCVT.L.S: an instruction that converts a single-precision floating-point number into

a signed long integer . 220
16.4.4 FCVT.LU.S: an instruction that converts a single-precision floating-point number

into an unsigned long integer . 221
16.4.5 FCVT.S.L: an instruction that converts a signed long integer into a single-precision

floating-point number . 222
16.4.6 FCVT.S.LU: an instruction that converts an unsigned long integer into a single-

precision floating-point number . 223
16.4.7 FCVT.S.W: an instruction that converts a signed integer into a single-precision

floating-point number . 224
16.4.8 FCVT.S.WU: an instruction that converts an unsigned integer into a single-precision

floating-point number . 225
16.4.9 FCVT.W.S: an instruction that converts a single-precision floating-point number into

a signed integer . 226
16.4.10 FCVT.WU.S: an instruction that converts a single-precision floating-point number

into an unsigned integer . 227
16.4.11 FDIV.S: a single-precision floating-point divide instruction 228
16.4.12 FEQ.S: a single-precision floating-point compare equal instruction 229
16.4.13 FLE.S: a single-precision floating-point compare less than or equal to instruction . . 229
16.4.14 FLT.S: a single-precision floating-point compare less than instruction 230
16.4.15 FLW: a single-precision floating-point load instruction 231
16.4.16 FMADD.S: a single-precision floating-point multiply-add instruction 231
16.4.17 FMAX.S: a single-precision floating-point MAX instruction 232
16.4.18 FMIN.S: a single-precision floating-point MIN instruction 233
16.4.19 FMSUB.S: a single-precision floating-point multiply-subtract instruction 233
16.4.20 FMUL.S: a single-precision floating-point multiply instruction 234
16.4.21 FMV.W.X: a single-precision floating-point write move instruction 235
16.4.22 FMV.X.H: a single-precision floating-point read move instruction 236
16.4.23 FNMADD.S: a single-precision floating-point negate-(multiply-add) instruction . . . 236
16.4.24 FNMSUB.S: a single-precision floating-point negate-(multiply-subtract) instruction . 237
16.4.25 FSGNJ.S: a single-precision floating-point sign-injection instruction 238
16.4.26 FSGNJN.S: a single-precision floating-point negate sign-injection instruction 239

x

16.4.27 FSGNJX.S: a single-precision floating-point XOR sign-injection instruction 239
16.4.28 FSQRT.S: a single-precision floating-point square-root instruction 240
16.4.29 FSUB.S: a single-precision floating-point subtract instruction 241
16.4.30 FSW: a single-precision floating-point store instruction 242

16.5 Appendix A-6 C Instructions . 242
16.5.1 C.ADD: a signed add instruction . 242
16.5.2 C.ADDI: a signed add immediate instruction . 243
16.5.3 C.ADDIW: an add immediate instruction that operates on the lower 32 bits 243
16.5.4 C.ADDI4SPN: an instruction that adds an immediate scaled by 4 to the stack pointer244
16.5.5 C.ADDI16SP: an instruction that adds an immediate scaled by 16 to the stack pointer245
16.5.6 C.ADDW: a signed add instruction that operates on the lower 32 bits 245
16.5.7 C.AND: a bitwise AND instruction . 246
16.5.8 C.ANDI: an immediate bitwise AND instruction . 247
16.5.9 C.BEQZ: a branch-if-equal-to-zero instruction . 248
16.5.10 C.BNEZ: a branch-if-not-equal-to-zero instruction . 249
16.5.11 C.EBREAK: a break instruction . 250
16.5.12 C.FLD: a floating-point load doubleword instruction 250
16.5.13 C.FLDSP: a floating-point doubleword load stack instruction 251
16.5.14 C.FSD: a floating-point store doubleword instruction 252
16.5.15 C.FSDSP: a floating-point store doubleword stack pointer instruction 253
16.5.16 C.J: a unconditional jump instruction . 253
16.5.17 C.JALR: a jump and link register instruction . 254
16.5.18 C.JR: a jump register instruction . 255
16.5.19 C.LD: a load doubleword instruction . 255
16.5.20 C.LDSP: a load doubleword instruction . 256
16.5.21 C.LI: a load immediate instruction . 257
16.5.22 C.LUI: a load upper immediate instruction . 257
16.5.23 C.LW: a load word instruction . 258
16.5.24 C.LWSP: a load word stack pointer instruction . 259
16.5.25 C.MV: an instruction that copies the value in rs to rd 259
16.5.26 C.NOP: a no-operation instruction . 260
16.5.27 C.OR: a bitwise OR instruction . 260
16.5.28 C.SD: a store doubleword instruction . 261
16.5.29 C.SDSP: a store doubleword stack pointer instruction 262
16.5.30 C.SLLI: an immediate logical left shift instruction . 262
16.5.31 C.SRAI: a right shift arithmetic immediate instruction 263
16.5.32 C.SRLI: an immediate right shift instruction . 264
16.5.33 C.SW: a store word instruction . 265
16.5.34 C.SWSP: a store word stack pointer instruction . 265
16.5.35 C.SUB: a signed subtract instruction . 266
16.5.36 C.SUBW: a signed subtract instruction that operates on the lower 32 bits 267
16.5.37 C.XOR: a bitwise XOR instruction . 268

xi

16.6 Appendix A-8 Pseudo instructions . 268

17 Appendix B T-Head Extended Instructions 272
17.1 Appendix B-1 Cache instructions . 272

17.1.1 DCACHE.CALL: an instruction that clears all dirty page table entries in the D-Cache272
17.1.2 DCACHE.CIALL: an instruction that clears all dirty page table entries in the D-

Cache and invalidates the D-Cache . 273
17.1.3 DCACHE.CIPA: clears dirty page table entries that match the specified physical

addresses from the D-Cache and invalidates the the D-Cache 274
17.1.4 DCACHE.CISW: an instruction that clears dirty page table entries in the D-Cache

based on the specified way and set and invalidates the D-Cache 274
17.1.5 DCACHE.CIVA: an instruction that clears dirty page table entries that match the

specified virtual addresses in the D-Cache and invalidates the D-Cache 275
17.1.6 DCACHE.CPA: an instruction that clears dirty page table entries that match the

specified physical addresses from the D-Cache . 276
17.1.7 DCACHE.CPAL1: an instruction that clears dirty page table entries that match the

specified physical addresses from the L1 D-Cache . 276
17.1.8 DCACHE.CVA: an instruction that clears dirty page table entries that match the

specified virtual addresses in the D-Cache . 277
17.1.9 DCACHE.CVAL1: an instruction that clears dirty page table entries that match the

specified virtual addresses in the L1 D-Cache . 278
17.1.10 DCACHE.IPA: an instruction that invalidates page table entries that match the spec-

ified physical addresses in the D-Cache . 278
17.1.11 DCACHE.ISW: an instruction that invalidates page table entries in the D-Cache

based on the specified way and set and invalidates the D-Cache 279
17.1.12 DCACHE.IVA: an instruction that invalidates the D-Cache based on the specified

virtual address . 280
17.1.13 DCACHE.IALL: an instruction that invalidates all page table entries in the D-Cache. 280
17.1.14 ICACHE.IALL: an instruction that invalidates all page table entries in the I-Cache . 281
17.1.15 ICACHE.IALLS: an instruction that invalidates all page table entries in the I-Cache

through broadcasting . 281
17.1.16 ICACHE.IPA: an instruction that invalidates page table entries that match the spec-

ified physical addresses in the I-Cache . 282
17.1.17 ICACHE.IVA: an instruction that invalidates page table entries that match the spec-

ified virtual addresses in the I-Cache . 283
17.1.18 L2CACHE.CALL: an instruction that clears all dirty page table entries in the L2 Cache283
17.1.19 L2CACHE.CIALL: an instruction that clears all dirty page table entries in the L2

Cache and invalidates the L2 Cache . 284
17.1.20 L2CACHE.IALL: an instruction that invalidates the L2 Cache 284
17.1.21 DCACHE.CSW: an instruction that clears dirty page table entries in the D-Cache

based on the specified set and way . 285
17.2 Appendix B-2 Multi-core synchronization instructions . 286

xii

17.2.1 SFENCE.VMAS: a broadcast instruction that synchronizes the virtual memory address286
17.2.2 SYNC: an instruction that performs the synchronization operation 287
17.2.3 SYNC.I: an instruction that synchronizes the clearing operation. 287
17.2.4 SYNC.IS: a broadcast instruction that synchronizes the clearing operation 288
17.2.5 SYNC.S: a broadcast instruction that performs a synchronization operation 288

17.3 Appendix B-3 Arithmetic operation instructions . 289
17.3.1 ADDSL: an add register instruction that shifts registers 289
17.3.2 MULA: a multiply-add instruction . 289
17.3.3 MULAH: a multiply-add instruction that operates on the lower 16 bits 290
17.3.4 MULAW: a multiply-add instruction that operates on the lower 32 bits 290
17.3.5 MULS: a multiply-subtract instruction . 291
17.3.6 MULSH: a multiply-subtract instruction that operates on the lower 16 bits 291
17.3.7 MULSW: a multiply-subtract instruction that operates on the lower 32 bits 292
17.3.8 MVEQZ: an instruction that sends a message when the register is 0 292
17.3.9 MVNEZ: an instruction that sends a message when the register is not 0 293
17.3.10 SRRI: an instruction that implements a cyclic right shift operation on a linked list . 293
17.3.11 SRRIW: an instruction that implements a cyclic right shift operation on a linked list

of low 32 bits of registers. 294
17.4 Appendix B-4 Bitwise operation instructions . 294

17.4.1 EXT: a signed extension instruction that extracts consecutive bits of a register . . . 294
17.4.2 EXTU: a zero extension instruction that extracts consecutive bits of a register 295
17.4.3 FF0: an instruction that finds the first bit with the value of 0 in a register 295
17.4.4 FF1: an instruction that finds the bit with the value of 1 296
17.4.5 REV: an instruction that reverses the byte order in a word stored in the register . . 296
17.4.6 REVW: an instruction that reverses the byte order in a low 32-bit word 297
17.4.7 TST: an instruction that tests bits with the value of 0 297
17.4.8 TSTNBZ: an instruction that tests bytes with the value of 0 298

17.5 Appendix B-5 Storage instructions . 299
17.5.1 FLRD: a load doubleword instruction that shifts floating-point registers 299
17.5.2 FLRW: a load word instruction that shifts floating-point registers 299
17.5.3 FLURD: a load doubleword instruction that shifts low 32 bits of floating-point registers300
17.5.4 FLURW: a load word instruction that shifts low 32 bits of floating-point registers . . 300
17.5.5 FSRD: a store doubleword instruction that shifts floating-point registers 301
17.5.6 FSRW: a store word instruction that shifts floating-point registers. 301
17.5.7 FSURD: a store doubleword instruction that shifts low 32 bits of floating-point registers302
17.5.8 FSURW: a store word instruction that shifts low 32 bits of floating-point registers . . 302
17.5.9 LBIA: a base-address auto-increment instruction that extends signed bits and loads

bytes . 303
17.5.10 LBIB: a load byte instruction that auto-increments the base address and extends

signed bits . 304
17.5.11 LBUIA: a base-address auto-increment instruction that extends zero bits and loads

bytes . 304

xiii

17.5.12 LBUIB: a load byte instruction that auto-increments the base address and extends
zero bits . 305

17.5.13 LDD: an instruction that loads double registers . 305
17.5.14 LDIA: a base-address auto-increment instruction that loads doublewords and extends

signed bits . 306
17.5.15 LDIB: a load doubleword instruction that auto-increments the base address and ex-

tends the signed bits . 306
17.5.16 LHIA: a base-address auto-increment instruction that loads halfwords and extends

signed bits . 307
17.5.17 LHIB: a load halfword instruction that auto-increments the base address and extends

signed bits . 308
17.5.18 LHUIA: a base-address auto-increment instruction that extends zero bits and loads

halfwords . 308
17.5.19 LHUIB: a load halfword instruction that auto-increments the base address and ex-

tends zero bits . 309
17.5.20 LRB: a load byte instruction that shifts registers and extends signed bits 309
17.5.21 LRBU: a load byte instruction that shifts registers and extends zero bits 310
17.5.22 LRD: a load doubleword instruction that shifts registers 310
17.5.23 LRH: a load halfword instruction that shifts registers and extends signed bits 310
17.5.24 LRHU: a load halfword instruction that shifts registers and extends zero bits 311
17.5.25 LRW: a load word instruction that shifts registers and extends signed bits 311
17.5.26 LRWU: a load word instruction that shifts registers and extends zero bits 312
17.5.27 LURB: a load byte instruction that shifts low 32 bits of registers and extends signed

bits . 312
17.5.28 LURBU: a load byte instruction that shifts low 32 bits of registers and extends zero

bits . 313
17.5.29 LURD: a load doubleword instruction that shifts low 32 bits of registers 313
17.5.30 LURH: a load halfword instruction that shifts low 32 bits of registers and extends

signed bits . 314
17.5.31 LURHU: a load halfword instruction that shifts low 32 bits of registers and extends

zero bits . 314
17.5.32 LURW: a load word instruction that shifts low 32 bits of registers and extends signed

bits . 315
17.5.33 LURWU: a load word instruction that shifts 32 bits of registers and extends zero bits 315
17.5.34 LWD: a load word instruction that loads double registers and extends signed bits . . 316
17.5.35 LWIA: a base-address auto-increment instruction that extends signed bits and loads

words . 317
17.5.36 LWIB: a load word instruction that auto-increments the base address and extends

signed bits . 317
17.5.37 LWUD: a load word instruction that loads double registers and extends zero bits . . 318
17.5.38 LWUIA: a base-address auto-increment instruction that extends zero bits and loads

words . 318

xiv

17.5.39 LWUIB: a load word instruction that auto-increments the base address and extends
zero bits . 319

17.5.40 SBIA: a base-address auto-increment instruction that stores bytes 319
17.5.41 SBIB: a store byte instruction that auto-increments the base address 320
17.5.42 SDD: an instruction that stores double registers . 320
17.5.43 SDIA: a base-address auto-increment instruction that stores doublewords 321
17.5.44 SDIB: a store doubleword instruction that auto-increments the base address 321
17.5.45 SHIA: a base-address auto-increment instruction that stores halfwords 322
17.5.46 SHIB: a store halfword instruction that auto-increments the base address 322
17.5.47 SRB: a store byte instruction that shifts registers . 323
17.5.48 SRD: a store doubleword instruction that shifts registers 323
17.5.49 SRH: a store halfword instruction that shifts registers 323
17.5.50 SRW: a store word instruction that shifts registers 324
17.5.51 SURB: a store byte instruction that shifts low 32 bits of registers 324
17.5.52 SURD: a store doubleword instruction that shifts low 32 bits of registers 325
17.5.53 SURH: a store halfword instruction that shifts low 32 bits of registers 325
17.5.54 SURW: a store word instruction that shifts low 32 bits of registers 326
17.5.55 SWIA: a base-address auto-increment instruction that stores words 326
17.5.56 SWIB: a store word instruction that auto-increments the base address 327
17.5.57 SWD: an instruction that stores the low 32 bits of double registers 327

17.6 Appendix B-6 Half-precision floating-point instructions . 328
17.6.1 FADD.H: a half-precision floating-point add instruction 328
17.6.2 FCLASS.H: a half-precision floating-point classification instruction 329
17.6.3 FCVT.D.H: an instruction that converts half-precision floating-point data to double-

precision floating-point data . 330
17.6.4 FCVT.H.D: an instruction that converts double-precision floating-point data to half-

precision floating-point data . 330
17.6.5 FCVT.H.L: an instruction that converts a signed long integer into a half-precision

floating-point number . 331
17.6.6 FCVT.H.LU: an instruction that converts an unsigned long integer into a half-

precision floating-point number . 332
17.6.7 FCVT.H.S: an instruction that converts single precision floating-point data to half-

precision floating-point data . 333
17.6.8 FCVT.H.W: an instruction that converts a signed integer into a half-precision

floating-point number . 334
17.6.9 FCVT.H.WU: an instruction that converts an unsigned integer into a half-precision

floating-point number . 335
17.6.10 FCVT.L.H: an instruction that converts a half-precision floating-point number to a

signed long integer . 336
17.6.11 FCVT.LU.H: an instruction that converts a half-precision floating-point number to

an unsigned long integer . 337

xv

17.6.12 FCVT.S.H: an instruction that converts half-precision floating-point data to single
precision floating-point data . 338

17.6.13 FCVT.W.H: an instruction that converts a half-precision floating-point number to a
signed integer . 339

17.6.14 FCVT.WU.H: an instruction that converts a half-precision floating-point number to
an unsigned integer . 340

17.6.15 FDIV.H: a half-precision floating-point division instruction 341
17.6.16 FEQ.H: an equal instruction that compares two half-precision numbers 342
17.6.17 FLE.H: a less than or equal to instruction that compares two half-precision floating-

point numbers . 342
17.6.18 FLH: an instruction that loads half-precision floating-point data 343
17.6.19 FLT.H: a less than instruction that compares two half-precision floating-point numbers344
17.6.20 FMADD.H: a half-precision floating-point multiply-add instruction 344
17.6.21 FMAX.H: a half-precision floating-point maximum instruction 345
17.6.22 FMIN.H: a half-precision floating-point minimum instruction 346
17.6.23 FMSUB.H: a half-precision floating-point multiply-subtract instruction 346
17.6.24 FMUL.H: a half-precision floating-point multiply instruction 347
17.6.25 FMV.H.X: a half-precision floating-point write transmit instruction 348
17.6.26 FMV.X.H: a transmission instruction that reads half-precision floating-point registers 349
17.6.27 FNMADD.H: a half-precision floating-point negate-(multiply-add) instruction 349
17.6.28 FNMSUB.H: a half-precision floating-point negate-(multiply-subtract) instruction . . 350
17.6.29 FSGNJ.H: a half-precision floating-point sign-injection instruction 351
17.6.30 FSGNJN.H: a half-precision floating-point sign-injection negate instruction 352
17.6.31 FSGNJX.H: a half-precision floating-point sign-injection XOR instruction 352
17.6.32 FSH: an instruction that stores half-precision floating point numbers 353
17.6.33 FSQRT.H: an instruction that calculates the square root of the half-precision floating-

point number . 353
17.6.34 FSUB.H: a half-precision floating-point subtract instruction 354

18 Appendix C Control Registers 356
18.1 Appendix C-1 M-mode control registers . 356

18.1.1 M-mode information register group . 356
18.1.1.1 Machine vendor ID register (mvendorid) . 356
18.1.1.2 Machine architecture ID register (marchid) 356
18.1.1.3 Machine implementation ID register (mimpid) 357
18.1.1.4 Machine hart ID register (mhartid) . 357

18.1.2 M-mode exception configuration register group . 357
18.1.2.1 Machine status register (mstatus) . 357
18.1.2.2 M-mode instruction set architecture register (misa) 360
18.1.2.3 M-mode exception downgrade control register (medeleg) 360
18.1.2.4 M-mode interrupt downgrade control register (mideleg) 361
18.1.2.5 M-mode interrupt-enable register (mie) . 361

xvi

18.1.2.6 M-mode trap vector base address register (mtvec) 362
18.1.2.7 M-mode counter access enable register (mcounteren) 363

18.1.3 M-mode exception handling register group . 363
18.1.3.1 M-mode scratch register (mscratch) . 363
18.1.3.2 M-mode exception program counter register (mepc) 363
18.1.3.3 M-mode cause register (mcause) . 363
18.1.3.4 M-mode interrupt-pending register (mip) . 364

18.1.4 M-mode memory protection registers . 365
18.1.4.1 Physical memory protection configuration register (pmpcfg) 365
18.1.4.2 Physical memory address register (pmpaddr) 366

18.1.5 M-mode counter registers . 366
18.1.5.1 M-mode cycle counter (mcycle) . 366
18.1.5.2 M-mode instructions-retired counter (minstret) 366
18.1.5.3 M-mode event counter (mhpmcountern) . 366

18.1.6 M-mode counter configuration registers . 366
18.1.6.1 M-mode event selector (mhpmeventn) . 367

18.1.7 M-mode CPU control and status extension registers 367
18.1.7.1 M-mode extension status register (mxstatus) 367
18.1.7.2 M-mode hardware configuration register (mhcr) 369
18.1.7.3 M-mode hardware operation register (mcor) 370
18.1.7.4 M-mode L2 Cache control register (mccr2) 372
18.1.7.5 M-mode implicit operation register (mhint) 373
18.1.7.6 M-mode reset vector base address register (mrvbr) 375
18.1.7.7 S-mode counter write enable register (mcounterwen) 376
18.1.7.8 M-mode event interrupt enable register (mcounterinten) 376
18.1.7.9 M-mode event overflow mark register (mcounteren) 377

18.1.8 M-mode cache access extension registers . 377
18.1.8.1 M-mode cache instruction register (mcins) 378
18.1.8.2 M-mode cache access index register (mcindex) 378
18.1.8.3 M-mode cache data register (mcdata0/1) . 379

18.1.9 M-mode CPU model registers . 379
18.1.9.1 M-mode CPU model register (mcpuid) . 380
18.1.9.2 On-chip bus base address register (mapbaddr) 380

18.1.10 Multi-core extension registers . 380
18.1.10.1 Snoop listening enable register (msmpr) . 380

18.2 Appendix C-2 S-mode control registers . 380
18.2.1 S-mode exception configuration registers . 380

18.2.1.1 S-mode status register (sstatus) . 381
18.2.1.2 S-mode interrupt-enable register (sie) . 381
18.2.1.3 S-mode trap vector base address register (stvec) 382
18.2.1.4 S-mode counter access enable register (scounteren) 382

18.2.2 S-mode exception handling registers . 382

xvii

18.2.2.1 S-mode scratch register (sscratch) . 382
18.2.2.2 S-mode exception program counter register (sepc) 382
18.2.2.3 S-mode cause register (scause) . 383
18.2.2.4 S-mode interrupt-pending register (sip) . 383

18.2.3 S-mode address translation registers . 383
18.2.3.1 S-mode address translation register (satp) . 383

18.2.4 S-mode CPU control and status extension registers 384
18.2.4.1 S-mode extension status register (sxstatus) 384
18.2.4.2 S-mode hardware control register (shcr) . 384
18.2.4.3 S-mode event overflow interrupt enable register (scounterinten) 384
18.2.4.4 S-mode event overflow mark register (scounterof) 384
18.2.4.5 S-mode cycle counter (scycle) . 384
18.2.4.6 S-mode instructions-retired counter (sinstret) 385
18.2.4.7 S-mode event counter (shpmcountern) . 385

18.2.5 S-mode MMU extension register . 385
18.2.5.1 S-mode MMU control register (smcir) . 385
18.2.5.2 S-mode MMU control register (smir) . 385
18.2.5.3 S-mode MMU control register (smeh) . 385
18.2.5.4 S-mode MMU control register (smel) . 386

18.3 Appendix C-3 U-mode control registers . 386
18.3.1 U-mode floating-point control registers . 386

18.3.1.1 Floating-point accrued exceptions register (fflags) 386
18.3.1.2 Floating-point dynamic rounding mode register (frm) 386
18.3.1.3 Floating-point control and status register (fcsr) 386

18.3.2 U-mode counter/timer registers . 387
18.3.2.1 User cycle register (cycle) . 387
18.3.2.2 U-mode timer register (time) . 388
18.3.2.3 User instructions-retired counter (instret) . 388
18.3.2.4 User event counter (hpmcountern) . 388

18.3.3 U-mode floating-point extension control registers . 388
18.3.3.1 U-mode floating-point extension control register (fxcr) 388

18.3.4 Vector extension registers . 389
18.3.4.1 Vector start position register (vstart) . 389
18.3.4.2 Fixed-point overflow flag bit register (vxsat) 389
18.3.4.3 Fixed-point rounding mode register (vxrm) 389
18.3.4.4 Vector length register (vl) . 390
18.3.4.5 Vector data type register (vtype) . 390
18.3.4.6 Vector width (unit: byte) register (vlenb) . 391

18.4 Appendix C-4 Additional Register description . 391

19 Program Examples 395
19.1 Optimal CPU performance configuration . 395

xviii

19.2 MMU setting example . 396
19.3 PMP setting example . 400
19.4 Cache examples . 401

19.4.1 Cache enabling example . 401
19.4.2 Example of synchronization between the instruction and data caches 402
19.4.3 Example of synchronization between the TLB and the data cache 402

19.5 Multi-core startup example . 403
19.6 Synchronization primitive examples . 403
19.7 PLIC setting example . 404
19.8 PMU setting example . 405

20 Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Pro-
gram Implementations 406
20.1 Overview . 406
20.2 RISC-V instructions . 406

20.2.1 fence instruction . 406
20.2.2 fence.i instruction . 407
20.2.3 sfence.vma instruction . 407
20.2.4 AMO instruction . 407
20.2.5 Load-Reserved/Store-Conditional instruction . 408

20.3 T-Head enhancement instruction . 409
20.3.1 sync.is . 409
20.3.2 dcache.cipa rs1 . 410
20.3.3 icache.iva rs1 . 410

20.4 Software example . 410
20.4.1 TLB maintenance . 410

20.4.1.1 TLB flush . 410
20.4.1.2 Flush process related TLB entries based on ASID 410
20.4.1.3 Flush TLB entries based on VA . 410
20.4.1.4 Flush TLB entries based on VA and ASID 411

20.4.2 Instruction space synchronization . 411
20.4.2.1 Intra-core global instruction space synchronization 411
20.4.2.2 Inter-core global instruction space synchronization 412
20.4.2.3 T-Head inter-core precise instruction space synchronization 412

20.4.3 DMA synchronization . 412
20.4.3.1 T-Head inter-core precise DMA synchronization, including three directions . 412

20.4.4 AMO implementations for reference . 413

xix

CHAPTER 1

Introduction

C908MP, built on the RISC-V instruction set architecture, is a high-performance multi-core 64-bit processor.
It is mainly designed to meet the increasing requirements for image and vision processing in IoT scenarios,
such as smart vision, in-vehicle vision, dash cams, and smart interaction. It can also be used in other
scenarios, including robot vacuums, unmanned aerial vehicles (UAVs), automatic driving, augmented reality
(AR), medical image processing, industrial robot vision, and mobile Internet.

C908MP adopts a homogeneous multi-core architecture and supports multiple clusters. Each cluster can sup-
port 1 to 4 cores. Each C908 core adopts the self-developed microsystem architecture and high-performance
computing technologies, such as dual-issue in-order processing, multi-mode branch prediction, and multi-
channel data prefetching, to implement performance optimization. In addition, C908 core supports real-time
detection and shutdown of idle functional modules to reduce the dynamic power consumption of the proces-
sor.

1.1 Features

1.1.1 Features of C908MP Architectural

• Adopts a homogeneous multi-core architecture and supports multiple clusters. Each cluster can support
1 to 4 cores.

• Supports one AXI4 or ACE master interface and a 128-bit bus.

• Supports one configurable low latency port (LLP) for the AXI4.0 master interface and a 128-bit bus.

1

Chapter 1. Introduction

• Supports one configurable dvice coherence port(DCP) for the AXI4.0 master interface and a 128-bit
bus.

• Supports an L1 instruction or data cache size of 16 KB, 32 KB, or 64 KB and a cache line size of 64
bytes. Allows you to configure an error correction code (ECC) or odd-even parity check mechanism.

• Supports an L2 cache size of 128 KB, 256 KB, 512 KB, 1 MB, 1.5 MB, 2 MB, 3 MB, or 4 MB, and a
cache line size of 64 bytes. Allows you to configure an ECC check mechanism.

• For L1 cache, supports the Modified, Exclusive, Shared, Invalid (MESI) cache coherence protocol;
for L2 cache, supports the Modified, Owned, Exclusive, Shared, Invalid (MOESI) cache coherence
protocol.

• Supports the core local interrupt controller (CLINT) and platform-level interrupt controller (PLIC),
and supports multi-cluster interrupt distribution.

• Supports RISC-V performance counters and timers.

• Supports Sv39 and Sv48 memory management, and supports the SVNAPOT standard extension and
SVPBMT standard extension.

• Supports 8, 16, 32, and 64 PMP entries, and supports ePMP.

• Supports the T-Head TEE extension.

• Allows power-off for each core or the entire cluster.

• Supports the RISC-V debug framework, and supports multi-core multi-cluster debugging.

1.1.2 Features of C908 Core

• RISC-V 64GCB[V] instruction set architecture;

• Both RV64 and RV32 instruction sets are supported in C908 User Mode;

• Little-endian mode supported;

• 9-stage pipelining architecture;

• In-order dual-issue, In-order fetch, dispatch, execute, and retire;

• Two-level translation lookaside buffer (TLB) memory management units for virtual/physical address
translation and memory management;

• I-Cache/D-Cache size: 16KB/32KB/64KB, with a cache line size of 64 bytes.

• Parity check can be configured for instruction cache. ECC or parity check can be configured for data
cache.

• Instruction prefetch, and automatic detection and dynamic startup of hardware;

• Low-power access technology with I-Cache way prediction;

• Multi-algorithm branch predictor with 2KB/4KB/8KB options;

www.t-head.cn 2

Chapter 1. Introduction

• Branch target buffer (BTB) with 256 entries;

• 8-layer hardware return address stack supported;

• Indirect branch predictor with 256 entries;

• Loop termination prediction supported;

• Instruction fusion technology supported;

• Dual issue and full in-order execution for load/store instructions;

• Concurrent bus access for memory read/write operations up to 8-way/12-way ;

• Write combining supported;

• 8-channel data prefetch, fixed stride and irregular stride data prefetch supported;

1.1.3 Features of C908 vector computing units

• Support RISCV V instruction extension

• Computing capability up to 512G Flops (@INT8)/ 256G Flops(@FP16) at maximum configuration of
4 cores and 2GHz

• Vector execution units support FP16/BFP16/FP32 floating points and 8-bit, 16-bit, 32-bit, and 64-bit
integral vector computations.

• Support 128-bit/256-bit vector register width (VLEN)

• The number of pipeline stages for vector execution unit operations and data storage be configured as
1 or 2

• Supports 128-bit and 256-bit vector data width for access.

• Support vector load/store segment instructions

• Support performance-optimized unaligned memory access

1.2 Configuration options

Table 1.1 describes configuration options of C908.

Table 1.1: Configurable items of C908

Feature Options Description
C908 Cluster
Number of cores 1, 2, 3, 4 C908MP supports 1-4 C908 cores.
VECTOR_SIMD Yes/No You can configure a vector execution unit.

Continued on next page

www.t-head.cn 3

Chapter 1. Introduction

Table 1.1 – continued from previous page
Feature Options Description
Vector register
width

128 or 256 You can set VLEN=128 or VLEN=256. Note that if VLEN=128,
DP=64; if VLEN=256, DP=128. DP indicates the datapath
width.

Double vector
execution unit

Yes/No Indicates whether to configure two sets of vector calculation
pipelines and storage access pipelines.

BHT Pro or Lite
You can set the BHT implementation method to Pro

(tage) or Lite (gshare).

MMU SV39 or SV48
You can set the value to SV39 or SV48. If you set it to

SV48, SV39 is also supported.

jTLB entry 512 or 1024 The number of jTLB entries.
Master interface
protocol

AXI or ACE You can set the master interface to support the AXI or ACE pro-
tocol.

LLP Yes/No You can configure a low latency port (LLP).
DCP Yes/No DCP is used for peripheral devices accessing on-chip high-speed

data cache to implement data consistency. It can also be used for
DMA.

L1 I-Cache 16 KB, 32 KB,
or 64 KB

You set the cache size to 16 KB, 32 KB, or 64 KB.

L1 D-Cache 16 KB, 32 KB,
or 64 KB

You set the cache size to 16 KB, 32 KB, or 64 KB.

L1 ECC/Parity Yes/No The parity check of L1 I-Cache
or ECC check of L1 D-Cache

L2 Cache 128KB,256KB,
512KB,1MB,
1.5MB, 2MB, 3
MB or 4 MB

You can set a size of 128 KB, 256 KB, 512 KB, 1 MB, 1.5 MB,
2MB, 3 MB, or 4 MB.

L2 ECC Yes/No The ECC check of L2 Tag/Data RAM
Number of PMP
regions

8, 16, 32, or 64 You can specify the number of PMP regions.

EPMP Yes/No You can configure enhanced PMP features.
TEE Yes/No | You can select TEE extensions.

Continued on next page

www.t-head.cn 4

Chapter 1. Introduction

Table 1.1 – continued from previous page
Feature Options Description
L2 RAM latency Tag RAM Setup: No flop/Flop

Tag RAM Access: 1~5 cycles
Data RAM Setup: No flop/Flop
Data RAM Access: 1~8 cycles

Debug resource
level

Minimum, typ-
ical, or maxi-
mum.

The typical configuration is recommended. For more information,
see the following table.

pic_top (external interrupt controller)
Number of inter-
rupts

32-1024，step 32 Number of interrupts

Number of clus-
ters

1-16 The number of clusters in the pic_top.

Number of harts 1-256 The number of harts in the pic_top. The value must be the same
as the number of cores. You do not need to create association
relationships between harts and clusters.

TEE Yes/No You can select TEE extensions.
tdt_dmi_top (debug bridge, JTAG to APB)
Number of APB
interfaces

1-32 You can use the same tdt_dmi_top to debug multiple clusters,
and an APB interface is associated with a cluster.

Sys APB Access Yes/No Sys APB Access allows CPU to access debug registers through the
master port and system bus.

Note:

• FPU is fixed and not configurable.

• The TEE setting of the cluster must be consistent with the TEE setting of pic_top.

• Debugging resource configuration:

Minimum configuration: one trigger. The trigger can be configured to the instruction address type.
Congruent matching and low-bit mask matching are supported.

Typical configuration: three triggers. Each trigger can be configured to the instruction address type
or memory access address type. Congruent matching and low-bit mask matching are supported.

Maximum configuration: eight triggers. Each trigger can be configured to the instruction address
type, instruction data type, memory access address type, or access data type. Congruent matching,
low-bit mask matching, Greater Than or Equal To operator, Less Than operator, mask matching with
the lower half, and mask matching with the upper half are supported. In this configuration, you can
also set two triggers to form a group. If a trigger group is set up, events are triggered only when the
conditions of the two triggers are met. There are two interrupt and exception triggers. Each trigger

www.t-head.cn 5

Chapter 1. Introduction

can be configured to an interrupt trigger or exception trigger.

For more information, see Debug .

1.3 XuanTie extended architecture

C908 is compatible with XuanTie C-series extended architecture 1.0, which provides extensions in the fol-
lowing aspects:

• Operation instructions: C908 improves operation capabilities with integer, floating-point, and
load/store instructions, well supplementing the RISC-V base instruction sets.

• Cache operations: C908 enables you to easily maintain caches to improve cache efficiency.

• Memory model: C908 manages address attributes efficiently to improve memory access efficiency.

• Control registers: C908 extends the features of control registers based on the standard RISC-V archi-
tecture.

• Multi-core synchronization instructions: C908 adopts multi-core synchronization instructions to keep
multi-core consistency.

1.4 Version compatibility

C908 is compatible with the following RISC-V standard versions:

• The RISC-V Instruction Set Manual, Volume I: RISC-V User-Level ISA, Version 2.2.

• The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version riscv-privileged-
20210915-public-review.

• RISC-V “V”Vector Extension, Version 1.0-rc1-20210608.

• RISC-V Bit-Manipulation ISA-extensions, Version 1.0.0, 2021-06-12: public review.

• RISC-V External Debug Support, Version 0.13.2.

• PMP Enhancements for memory access and execution prevention on Machine mode (Smepmp), Version
0.9.3,07/2021.

• RISC-V Base Cache Management Operation ISA Extensions Version 1.0-rc2-2c97b28, 2021-11-05:
Frozen.

1.5 Terms

• Logic 1: The level value corresponding to the Boolean logic value TRUE.

www.t-head.cn 6

Chapter 1. Introduction

• Logic 0: The level value corresponding to the Boolean logic value FALSE.

• Set: The action of setting one or more bits to the level value corresponding to logic 1.

• Clear: The action of setting one or more bits to the level value corresponding to logic 0.

• Reserved bit: A bit reserved for feature extension. The value of a reserved bit is 0 unless otherwise
specified.

• Signal: An electrical value used to transfer information based on its state or state transition.

• Pin: An external electrical and physical connection. Multiple signals can connect to one pin.

• Enable: The action of switching a discrete signal to a valid state:

– Switch a valid low-level signal from a high level to a low level.

– Switch a valid high-level signal from a low level to a high level.

• Disable: The action of switching the state of an enabled signal:

– Switch a valid low-level signal from a low level to a high level.

– Switch a valid high-level signal from a high level to a low level.

• LSB: The least significant bit. MSB: The most significant bit.

• Signal, bit field, and control bit: Expressed based on a general rule.

• Identifier followed by a value range: Indicates a group of signals from the most significant bit to
the least significant bit.

For example, addr[4:0] indicates a group of address buses, where addr[4] indicates the most
significant bit, and addr[0] indicates the least significant bit.

• Single identifier: Indicates a single signal.

For example, pad_cpu_rst_b indicates a single signal.

In some cases, an identifier followed by a number is used to express a specific meaning. For
example, addr15 indicates the 16th bit of a group of buses.

www.t-head.cn 7

CHAPTER 2

C908MP Overview

2.1 Structure

The structure of C908MP is shown in Fig. 2.1 .

2.2 In-core subsystems

In-core subsystems of C908 include the instruction fetch unit (IFU), instruction execution unit (IEU), vector
floating-point unit (VFPU), load/store unit (LSU), memory management unit (MMU), and physical memory
protection unit (PMP).

2.2.1 IFU

The IFU can fetch and parallel process up to four instructions at a time. It improves access efficiency with a
variety of technologies, for example, I-Cache way prediction, instruction registers, and direct/indirect branch
prediction. The IFU features low power consumption, high branch prediction accuracy, and high prefetch
efficiency.

2.2.2 IEU

An IEU can decode and issue two instructions at the same time. IEUs include the arithmetic logic unit
(ALU), multiplication (MULT) unit, division (DIV) unit, and branch/jump unit (BJU). The ALU is used

8

Chapter 2. C908MP Overview

Fig. 2.1: C908MP structure

www.t-head.cn 9

Chapter 2. C908MP Overview

for 32-bit and 64-bit integers and bit-extension operations. The MULT unit supports 16×16, 32×32, and
64×64 integer multiplication. The DIV unit is designed based on the radix-4 and radix-16 SRT algorithms.
Its execution cycle varies with operands. The BJU can process branch prediction errors within each cycle.
The IEU can retire two instructions at the same time.

2.2.3 VFPU

FPUs include the floating-point arithmetic logic unit (FALU), floating-point fused multiply-add unit
(FMAU), and floating-point divide and square root unit (FDSU). They support half-precision, single-
precision, and double-precision operations. The FALU performs operations such as addition, subtraction,
comparison, conversion, register data transmission, sign injection, and classification.

The FMAU performs operations such as common multiplication and fused multiply-add operations. The
FDSU performs operations such as floating-point division and square root operations. The vector execution
unit is developed by extending the floating-point unit. On the basis of the original scalar floating-point
computation, floating-point units can be extended to vector floating-point units Vector floating-point units
include the vector floating-point arithmetic logic unit (VFALU), vector floating-point fused multiply-add
unit (VFMAU), and vector floating-point divide and square root unit (VFDSU).

Vector floating-point units support vector floating-point computation of different bits. In addition, vector
integer units are added. Vector integer units include the vector arithmetic logic unit (VALU), vector shift
unit (VSHIFT), vector multiplication unit (VMUL), vector division unit (VDIVU), vector permutation unit
(VPERM), vector reduction unit (VREDU), and vector logical operation unit (VMISC).

2.2.4 LSU

The LSU supports dual issue for scalar store/load instructions, single issue for vector store/load instructions,
and full out-of-order execution for all store/load instructions. The LSU supports non-blocking access to
caches. It supports byte, halfword, word, doubleword, and quadword store/load instructions, and supports
sign/zero extension for byte and halfword load instructions. Store/load instructions can be executed in a
pipeline so that only one data entry is accessed per cycle. The LSU supports 8-channel hardware prefetch.
It can transfer data to the L1 D-Cache in advance. If the D-Cache is absent, the LSU supports parallel bus
access.

2.2.5 MMU

The MMU translates 39-bit and 48-bit virtual addresses to 40-bit physical addresses in compliance with the
RISC-V SV39 standard and RISC-V SV48 standard. C908MMU extends software writeback methods and
address attributes based on the hardware writeback standards defined in SV39 and SV48.

For more information, see Memory Model .

www.t-head.cn 10

Chapter 2. C908MP Overview

2.2.6 PMP

The PMP unit of C908 complies with the RISC-V standard and supports 8, 16, 32, and 64 entries, but does
not support the NA4 mode. The minimum granularity supported by the PMP unit is 4 KB. In addition to
the standard PMP features, you can also configure the enhanced PMP (ePMP) features.

For more information, see Memory Model .

2.3 Multi-core subsystems

Multi-core subsystems of C908 include the data consistency interface unit (CIU), L2 cache, master device
interface unit, device coherence port (DCP) supporting AXI4.0, and low latency port (LLP).

2.3.1 CIU

The CIU ensures data coherence between L1 D-Caches based on the MESI protocol. Two listening buffers
are configured to parallel handle multiple listening requests, to fully utilize the listening bandwidth. The
CIU adopts an efficient data bypassing mechanism. When a listening request hits an L1 D-Cache under
listening, data is directly bypassed to the request initiation core. In addition, the CIU supports broadcasting
of invalid TLB/I-Cache requests. This reduces the software costs of maintaining data coherence between
TLB/I-Cache and D-Cache.

2.3.2 L2 cache

The L2 cache is tightly coupled to the CIU for synchronous access with L1 D-Caches. The L2 cache adopts a
block-based pipelining architecture and can parallel handle two access requests within one cycle. It supports
a maximum access bandwidth of 1024 bps. The operating frequency of the L2 cache is the same as that
of C908. The tag and data RAM access latency can be configured by using software. L2 cache supports
quick-return mechanisms. When L2 cache is hit, data is directly bypassed to the request initiation core.

2.3.3 Master device interface unit

The master device interface unit supports the AXI4 protocol and address access by keyword priority, and
can work under different system clock to CPU clock ratios, for example, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, and
1:8.

2.3.4 DCP

The DCP supports the AXI4.0 protocol and can be used for peripheral devices accessing on-chip high-speed
data cache.

www.t-head.cn 11

Chapter 2. C908MP Overview

For more information, see Interrupt Controllers .

2.3.5 LLP

The LLP supports the AXI4.0 protocol and can be used as a dedicated port for accessing peripheral devices.
The LLP has a separate data channel and is not affected by the bandwidth of the main port.

For more information, see Interrupt Controllers .

2.4 Multi-cluster subsystems

Multi-cluster subsystems of C908 and C908 include the programmable interrupt controllers (PICs), timer,
and custom multi-cluster multi-core single-port debug framework.

2.4.1 PIC

PICs include the platform-level interrupt controller (PLIC) and core local interrupt (CLINT) controller. The
PLIC controls sampling and distribution of up to 1023 external interrupt sources. It supports electrical level
interrupts and pulse interrupts. You can set up to 32 interrupt priorities. The CLINT controller is used
to process software interrupts and timer interrupts. The designs of PICs of C908 adopt the external type.
Therefore, the PICs can process external interrupts and local interrupts occurred on different clusters.

For more information, see Interrupt Controllers .

2.4.2 Timer

A multi-cluster multi-core system uses a 64-bit system timer, and each core has a private timer compare value
register. Values of the system timer are collected and compared with those in the private timer compare
value register of the software to generate timer signals.

For more information, see Interrupt Controllers .

2.4.3 Debug system

C908 adopts a multi-cluster multi-core single-port debug framework. It uses a shared JTAG interface to
access the hardware assisted debug unit of each cluster, and control the cores to enter or exit the debug
mode and the processor resources accessed. The JTAG interface and debug unit (DM) in C908 are in
compliance with the RISC-V debug V0.13.2 standard protocol.

For more information, see Debug .

www.t-head.cn 12

Chapter 2. C908MP Overview

2.5 Interface overview

C908 provides the following interfaces by feature: clock reset signal, bus system, interrupt system, debug
system, low power system, DFT system, and CPU running monitoring signal.

For more information, see Fig. 2.2.

Fig. 2.2: C908MP interfaces

www.t-head.cn 13

CHAPTER 3

Instruction Sets

This section describes the instruction sets implemented in C908: RV base instruction sets and XuanTie
extended instruction sets.

3.1 RV base instruction sets

3.1.1 Integer instruction set (RV64I)

The integer instruction set includes instructions of the following types by feature:

• Add/Subtract instructions

• Logical operation instructions

• Shift instructions

• Compare instructions

• Data transmission instructions

• Branch and jump instructions

• Memory access instructions

• Control register operation instructions

• Low power instructions

• Exception-return instructions

14

Chapter 3. Instruction Sets

• Special functional instructions

Table 3.1: RV64I instructions

Instruction Description Execution latency
Add/Subtract instructions
ADD A signed add instruction 1
ADDW A signed add instruction that operates on the lower

32 bits
1

ADDI A signed add immediate instruction 1
ADDIW A signed add immediate instruction that operates

on the lower 32 bits
1

SUB A signed subtract instruction 1
SUBW A signed subtract instruction that operates on the

lower 32 bits
1

Logic operation instructions
AND A bitwise AND instruction. 1
ANDI An immediate bitwise AND instruction 1
OR A bitwise OR instruction 1
ORI An immediate bitwise OR instruction 1
XOR A bitwise XOR instruction. 1
XORI An immediate bitwise XOR instruction 1
Shift instructions
SLL A logical left shift instruction 1
SLLW A word logical left shift instruction that operates on

the lower 32 bits
1

SLLI An immediate logical left shift instruction 1
SLLIW An immediate logical left shift instruction that op-

erates on the lower 32 bits
1

SRL A logical right shift instruction 1
SRLW A logical right shift instruction that operates on the

lower 32 bits
1

SRLI An immediate logical right shift instruction 1
SRLIW An immediate logical right shift instruction that op-

erates on the lower 32 bits
1

SRA An arithmetic right shift instruction 1
SRAW An arithmetic right shift instruction that operates

on the lower 32 bits
1

SRAI An immediate arithmetic right shift instruction 1
Continued on next page

www.t-head.cn 15

Chapter 3. Instruction Sets

Table 3.1 – continued from previous page
Instruction Description Execution latency
SRAIW An immediate arithmetic right shift instruction that

operates on the lower 32 bits
1

Compare instructions
SLT A signed set-if-less-than instruction 1
SLTU An unsigned set-if-less-than instruction 1
SLTI A signed set-if -less-than-immediate instruction 1
SLTIU An unsigned set-if -less-than-immediate instruction 1
Data transmission instructions
LUI A load upper immediate instruction 1
AUIPC An add upper immediate to PC instruction 1
Branch and jump instructions
BEQ A branch-if-equal instruction 1
BNE A branch-if-not-equal instruction 1
BLT A signed branch-if-less-than instruction 1
BGE A signed branch-if-g reater-than-or-equal instruc-

tion
1

BLTU An unsigned branch-if-less-than instruction 1
BGEU An unsigned branch-if-g reater-than-or-equal in-

struction
1

JAL An instruction for directly jumping to a subroutine 1
JALR An instruction for jumping to a subroutine by using

an address in a register
1

Memory access instructions
LB A sign-extended byte load instruction WEAK ORDER LOAD:

>=3
STORE: 1 STRONG OR-
DER
Aperiodic

LBU An unsign-extended byte load instruction Same as above
LH A sign-extended halfword load instruction Same as above
LHU An unsign-extended halfword load instruction Same as above
LW A sign-extended word load instruction Same as above
LWU An unsign-extended word load instruction Same as above
LD A doubleword load instruction Same as above
SB A byte store instruction Same as above
SH A halfword store instruction Same as above
SW A word store instruction Same as above
SD A doubleword store instruction Same as above

Continued on next page

www.t-head.cn 16

Chapter 3. Instruction Sets

Table 3.1 – continued from previous page
Instruction Description Execution latency
Control register operation instructions
CSRRW A move instruction that reads/writes control regis-

ters
Blocked
Aperiodic

CSRRS A move instruction for setting control registers Same as above
CSRRC A move instruction that clears control register Same as above
CSRRWI A move instruction that reads/writes immediates in

control registers
Same as above

CSRRSI A move instruction for setting immediates in control
registers

Same as above

CSRRCI A move instruction that clears immediates in control
registers

Same as above

Low power instructions
WFI An instruction for entering the low-power standby

mode
Aperiodic

Exception-return instructions
MRET An instruction for returning from exceptions in ma-

chine mode (M-mode)
Block

SRET An instruction for returning from exceptions in su-
pervisor mode (S-mode)

Same as above

Special functional instructions
FENCE A memory synchronization instruction Aperiodic
FENCE.I An instruction stream synchronization instruction Blocked
SFENCE.VMA A virtual memory synchronization instruction Same as above
EBREAK A breakpoint instruction 1
ECALL An environment call instruction 1

For more information, see Appendix A-1 I instructions .

3.1.2 Multiply/Divide instruction set (RV64M)

Table 3.2: RV64M instructions

Instruction Description Execution latency
MUL A signed multiply instruction 4
MULW A signed multiply instruction that operates on the lower 32 bits 4
MULH A signed multiply instruction that extracts upper bits 4
MULHS A signed-unsigned multiply instruction that extracts upper bits 4
MULHU An unsigned multiply instruction that extracts upper bits 4

Continued on next page

www.t-head.cn 17

Chapter 3. Instruction Sets

Table 3.2 – continued from previous page
Instruction Description Execution latency
DIV A signed divide instruction. 3-20
DIVW A signed divide instruction that operates on the lower 32 bits 3-12
DIVU An unsigned divide instruction. 3-20
DIVUW An unsigned divide instruction that operates on the lower 32 bits 3-12
REM A signed remainder instruction 3-20
REMW A signed remainder instruction that operates on the lower 32 bits 3-12
REMU An unsigned remainder instruction. 3-20
REMUW An unsigned remainder instruction that operates on the lower 32 bits 3-12

For more information, see Appendix A-2 M instructions .

3.1.3 Atomic instruction set (RV64A)

Table 3.3: RV64A instructions

Instruction Description Execution latency
LR.W A word load-reserved instruction. This instruction is split into

multiple atomic instructions
for execution, but latency is
not allowed.

LR.D A doubleword load-reserved instruction.
SC.W A word store-conditional instruction.
SC.D A doubleword store-conditional instruc-

tion.
AMOSWAP.W An atomic swap instruction that oper-

ates on the lower 32 bits.
AMOSWAP.D An atomic swap instruction.
AMOADD.W An atomic add instruction that operates

on the lower 32 bits.
AMOADD.D An atomic add instruction.
AMOXOR.W An atomic bitwise XOR instruction that

operates on the lower 32 bits.
AMOXOR.D An atomic bitwise XOR instruction.
AMOAND.W An atomic bitwise AND instruction that

operates on the lower 32 bits.
AMOAND.D An atomic bitwise AND instruction.
AMOOR.W An atomic bitwise OR instruction that

operates on the lower 32 bits.
AMOOR.D An atomic bitwise OR instruction
AMOMIN.W An atomic signed MIN instruction that

operates on the lower 32 bits.
Continued on next page

www.t-head.cn 18

Chapter 3. Instruction Sets

Table 3.3 – continued from previous page
Instruction Description Execution latency
AMOMIN.D An atomic signed MIN instruction
AMOMAX.W An atomic signed MAX instruction that

operates on the lower 32 bits.
AMOMAX.D An atomic signed MAX instruction.
AMOMINU.W An atomic unsigned MIN instruction

that operates on the lower 32 bits.
AMOMINU.D An atomic unsigned MIN instruction.
AMOMAXU.W An atomic unsigned MAX instruction

that operates on the lower 32 bits.
AMOMAXU.D An atomic unsigned MAX instruction.

For more information, see Appendix A-3 A instructions .

3.1.4 Single-precision floating-point instruction set

A single-precision floating-point instruction set includes instructions of the following types by feature:

• Operation instructions

• Sign injection instructions

• Data transmission instructions

• Compare instructions

• Data type conversion instructions

• Memory store instructions

• Floating-point classify instructions

Table 3.4: RV64F instructions

Instruction Description Latency
Operation instruction
FADD.S A single-precision floating-point

add instruction.
3

FSUB.S A single-precision floating-point
subtract instruction.

3

FMUL.S A single-precision floating-point
multiply instruction

4

FMADD.S A single-precision floating-point
multiply-add instruction.

5

Continued on next page

www.t-head.cn 19

Chapter 3. Instruction Sets

Table 3.4 – continued from previous page
Instruction Description Latency
FMSUB.S A single-precision floating-point

multiply-subtract instruction.
5

FNMADD.S A single-precision floating-point
n egate-(multiply-add) instruc-
tion.

5

FNMSUB.S A single-precision floating-point
negate -(multiply-subtract) in-
struction.

5

FDIV.S A single-precision floating-point
divide instruction.

4-10

FSQRT.S A single-precision floating-point
square-root instruction.

4-10

Sign injection instructions
FSGNJ.S A single-precision floating-point

sign-injection instruction.
3

FSGNJN.S A single-precision floating-point
negate sign-injection instruction.

3

FSGNJX.S A single-precision floating-point
sign-injection XOR instruction.

3

Data transmission instructions
FMV.X.W A single-precision floating-point

read move instruction
1+1 in split execution

FMV.W.X A single-precision floating-point
write move instruction.

1+1 in split execution

Compare instructions
FMIN.S A single-precision floating-point

MIN instruction.
3

FMAX.S A single-precision floating-point
MAX instruction.

3

FEQ.S A single-precision floating-point
compare equal instruction.

3+1 in split execution

FLT.S A single-precision floating-point
compare less than instruction.

3+1 in split execution

FLE.S A single-precision floating-point
compare less than or equal to in-
struction.

3+1 in split execution

Data type conversion instructions
Continued on next page

www.t-head.cn 20

Chapter 3. Instruction Sets

Table 3.4 – continued from previous page
Instruction Description Latency
FCVT.W.S An instruction that converts

a single-precision floating-point
number into a signed integer.

3+1 in split execution

FCVT.WU.S An instruction that converts
a single-precision floating-point
number into an unsigned integer.

3+1 in split execution

FCVT.S.W An instruction that converts a
signed integer into a single-
precision floating-point number.

3+1 in split execution

FCVT.S.WU An instruction that converts an
unsigned integer into a single-
precision floating-point number.

3+1 in split execution

FCVT.L.S An instruction that converts
a single-precision floating-point
number into a signed long inte-
ger.

3+1 in split execution

FCVT.LU.S An instruction that converts
a single-precision floating-point
number into an unsigned long in-
teger.

3+1 in split execution

FCVT.S.L An instruction that converts a
signed long integer into a single-
precision floating-point number.

1+3 in split execution

FCVT.S.LU An instruction that converts
an unsigned long integer into
a single-precision floating-point
number.

1+3 in split execution

Memory store instruction
FLW A single-precision floating-point

load instruction.
WEAK ORDER LOAD: >=3
STORE: 1 STRONG ORDER
Aperiodic

FSW A single-precision floating-point
store instruction.

Same as above

Floating-point classify instructions
FCLASS.S A single-precision floating-point

classify instruction.
1+1

For more information, see Appendix A-4 F instructions .

www.t-head.cn 21

Chapter 3. Instruction Sets

3.1.5 Compressed instruction set (RV64C)

The compressed instruction set includes instructions of the following types by feature:

• Add/Subtract instructions

• Logical operation instructions

• Shift instructions

• Data transmission instructions

• Branch and jump instructions

• Immediate offset access instructions

Table 3.5: RV64C instructions

Instruction Description Latency
Add/Subtract instructions
C.ADD A signed add instruction 1
C.ADDW A signed add instruction that op-

erates on the lower 32 bits.
1

C.ADDI A signed add immediate instruc-
tion.

1

C.ADDIW A signed add immediate instruc-
tion that operates on the lower 32
bits.

1

C.SUB A compressed signed subtract in-
struction.

1

C.SUBW A signed subtract instruction
that operates on the lower 32 bits

1

C.ADDI16SP An instruction that adds an im-
mediate scaled by 16 to the stack
pointer.

1

C.ADDI4SPN An instruction that adds an im-
mediate scaled by 4 to the stack
pointer

1

Logic operation instructions
C.AND A bitwise AND instruction 1
C.ANDI An immediate bitwise AND in-

struction
1

C.OR A bitwise OR instruction 1
C.XOR A bitwise XOR instruction 1
Shift instructions

Continued on next page

www.t-head.cn 22

Chapter 3. Instruction Sets

Table 3.5 – continued from previous page
Instruction Description Latency
C.SLLI An immediate logical left shift in-

struction.
1

C.SRLI An immediate logical right shift
instruction.

1

C.SRAI An immediate arithmetic right
shift instruction.

1

Data transmission instructions
C.MV A data move instruction 1
C.LI An instruction for moving imme-

diates in the lower bits
1

C.LUI An instruction for moving imme-
diates in the upper bits

1

Branch and jump instructions
C.BEQZ Abranch- if-equal-to-zero instruc-

tion.
1

C.BNEZ Abranch- if-not-equal-to-zero in-
struction.

1

C.J An unconditional jump instruc-
tion

1

C.JR A register-based jump instruc-
tion

1

C.JALR An instruction for jumping to a
subroutine by using an address in
a register

1

Immediate offsetaccess instructions
C.LW A word load instruction Weak order

LOAD: >=3
STORE: 1
STRONG ORDER
Aperiodic

C.SW A word store instruction. Same as above
C.LWSP A word stack load instruction Same as above
C.SWSP A word stack store instruction Same as above
C.LD A doubleword load instruction. Same as above
C.SD A doubleword store instruction Same as above
C.LDSP A doubleword stack load instruc-

tion
Same as above

Continued on next page

www.t-head.cn 23

Chapter 3. Instruction Sets

Table 3.5 – continued from previous page
Instruction Description Latency
C.SDSP A doubleword stack store instruc-

tion
Same as above

C.FLD A double-precision load instruc-
tion.

Same as above

C.FSD A double-precision store instruc-
tion.

Same as above

C.FLDSP A double-precision stack store in-
struction.

Same as above

C.FSDSP A double-precision stack load in-
struction.

Same as above

Special instructions
C.NOP A no-operation instruction 1
C.EBREAK A breakpoint instruction 1

For more information, see Appendix A-6 C Instructions .

3.1.6 Vector instruction set (RVV)

For more information, see RISC-V “V”Vector Extension, Version 1.0-rc1-20210608

URL：https://github.com/riscv/riscv-v-spec/releases/download/v1.0-rc1/riscv-v-spec-1.0-rc1.pdf

3.1.7 Bit operation instruction set (RV64B)

For more information, see ：RISC-V Bit-Manipulation ISA-extensions, Version 1.0.0, 2021-06-12: public
review

URL：https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0.pdf

3.2 XuanTie extended instruction sets

C908 provides some extended custom instructions based on the RV64GCB[V] instruction sets. Extended
half-precision floating-point instructions of C908 can be directly used. All other extended instruction sets of
C908 must be enabled before they can be used; otherwise, illegal instruction errors will occur. To enable an
extended instruction set, enable the THEADISAEE bit in the MXSTATUS register.

3.2.1 Arithmetic operation instructions

www.t-head.cn 24

https://github.com/riscv/riscv-v-spec/releases/download/v1.0-rc1/riscv-v-spec-1.0-rc1.pdf
https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0.pdf

Chapter 3. Instruction Sets

Table 3.6: Arithmetic operation instructions

Instruction Description Execution Latency
Add/Subtract instructions
ADDSL An add register instruction

that shifts registers
1

MULA A multiply-add instruction Additive numbers uncorrelated: 4
MULS A multiply-subtract instruc-

tion
Additive numbers uncorrelated: 4

MULAW A multiply-add instruction
that operates on the lower 32
bits

Additive numbers correlated: 1

MULSW A multiply-subtract instruc-
tion that operates on the
lower 32 bits.

Additive numbers correlated: 1

MULAH A multiply-add instruction
that operates on the lower 16
bits

Additive numbers correlated: 1

MULSH A multiply-subtract instruc-
tion that operates on the
lower 16 bits.

Additive numbers correlated: 1

Shift instructions
SRRI A cyclic right shift instruc-

tion.
1

SRRIW A cyclic right shift instruc-
tion that operates on the
lower 32 bits.

1

Move instructions
MVEQZ An instruction for moving

values when the register value
is 0

1

MVNEZ An instruction for moving
values when the register value
is not 0

1

For more information, see Appendix B-3 Arithmetic operation instructions .

3.2.2 Bit operation instructions

www.t-head.cn 25

Chapter 3. Instruction Sets

Table 3.7: Bit operation instructions

Instruction Description Execution latency
Bit operation instructions
TST An instruction for testing bits

with the value of 0.
1

TSTNBZ An instruction for testing
bytes with the value of 0.

1

REV An instruction for reversing
the byte order.

1

REVW An instruction for reversing
the byte order in the lower 32
bits.

1

FF0 An instruction for fast finding
the first bit with the value of
0 in a register.

1

FF1 An instruction for fast finding
the first bit with the value of
1 in a register.

1

EXT A signed extension instruc-
tion for extracting consecu-
tive bits of a register.

1

EXTU A zero extension instruc-
tion for extracting consecu-
tive bits of a register.

1

For more information, see Appendix B-4 Bitwise operation instructions .

3.2.3 Memory access instructions

Table 3.8: Memory access instructions

Instruction Description Execution latency
FLRD A doubleword load instruc-

tion for shifting floating-point
registers.

Weak order >= 3
STRONG ORDER
Aperiodic

FLRW A word load instruction for
shifting floating-point regis-
ters.

Continued on next page

www.t-head.cn 26

Chapter 3. Instruction Sets

Table 3.8 – continued from previous page
Instruction Description Execution latency
FLURD A doubleword load instruc-

tion for shifting the lower 32
bits in floating-point regis-
ters.

FLURW A word load instruction for
shifting the lower 32 bits in
floating-point registers.

LRB A byte load instruction for
shifting registers and extend-
ing signed bits.

LRH A halfword load instruction
for shifting registers and ex-
tending signed bits

LRW A halfword load instruction
for shifting registers and ex-
tending signed bits

LRD A doubleword load instruc-
tion for shifting registers.

LRBU A byte load instruction for
shifting registers and extend-
ing zero bits.

LRHU A halfword load instruction
for shifting registers and ex-
tending zero bits.

LRWU A word load instruction for
shifting registers and extend-
ing zero bits.

LURB A byte load instruction for
shifting registers and extend-
ing signed bits.

LURH A halfword load instruction
for shifting registers and ex-
tending signed bits.

LURW A word load instruction for
shifting the lower 32 bits
in registers and extending
signed bits.

Continued on next page

www.t-head.cn 27

Chapter 3. Instruction Sets

Table 3.8 – continued from previous page
Instruction Description Execution latency
LURD A doubleword load instruc-

tion for shifting the lower 32
bits in floating-point regis-
ters.

LURBU A byte load instruction for
shifting the lower 32 bits in
registers and extending zero
bits.

LURHU A halfword load instruction
for shifting the lower 32 bits
in registers and extending
zero bits.

LURWU A word load instruction for
shifting the lower 32 bits in
registers and extending zero
bits.

LBIA A base-address auto-
increment instruction for
loading bytes and extending
signed bits.

This instruction is split into the load and ALU
instructions for execution.

LBIB A byte load instruction for
auto-incrementing the base
address and extending signed
bits.

LHIA A base-address auto-
increment instruction for
loading halfwords and ex-
tending signed bits.

LHIB A halfword load instruc-
tion for auto-incrementing
the base address and extend-
ing signed bits.

LWIA A base-address auto-
increment instruction for
loading words and extending
signed bits.

Continued on next page

www.t-head.cn 28

Chapter 3. Instruction Sets

Table 3.8 – continued from previous page
Instruction Description Execution latency
LWIB The word load instruction for

auto-incrementing the base
address and extending signed
bits.

LDIA A base-address auto-
increment instruction for
loading doublewords and
extending signed bits.

LDIB A doubleword load instruc-
tion for auto-incrementing
the base address and extend-
ing signed bits.

LBUIA A base-address auto-
increment instruction for
loading bytes and extending
zero bits.

LBUIB A byte load instruction for
auto-incrementing the base
address and extending zero
bits.

LHUIA An address auto-increment
instruction for loading half-
words and extending zero
bits.

LHUIB A halfword load instruc-
tion for auto-incrementing
the base address and extend-
ing zero bits

LWUIA An address auto-increment
instruction for loading words
and extending zero bits.

LWUIB A word load instruction for
auto-incrementing the base
address and extending zero
bits.

LDD A double-register load in-
struction.

This instruction is split into two load instruc-
tions for execution.

Continued on next page

www.t-head.cn 29

Chapter 3. Instruction Sets

Table 3.8 – continued from previous page
Instruction Description Execution latency
LWD A double-register word load

instruction for extending
signed bits.

LWUD A double-register word load
instruction for extending zero
bits.

FSRD A doubleword store instruc-
tion for shifting floating-point
registers.

Weak order
LOAD: >=3
STORE: 1
STRONG ORDER
Aperiodic

FSRW A word store instruction for
shifting floating-point regis-
ters.

FSURD A doubleword store instruc-
tion for shifting the lower 32
bits in floating-point regis-
ters.

FSURW A word store instruction for
shifting the lower 32 bits in
floating-point registers.

SRB A byte store instruction for
shifting registers.

SRW A word store instruction for
shifting registers.

SRD A doubleword store instruc-
tion for shifting registers.

SURB A byte store instruction for
shifting the lower 32 bits in
registers.

SURH A halfword store instruction
for shifting the lower 32 bits
in registers.

SURW A word store instruction for
shifting the lower 32 bits in
registers.

Continued on next page

www.t-head.cn 30

Chapter 3. Instruction Sets

Table 3.8 – continued from previous page
Instruction Description Execution latency
SURD A doubleword store instruc-

tion for shifting the lower 32
bits in floating-point registers

SBIA A base-address auto-
increment instruction for
storing bytes

This instruction is split into the store and
ALU instructions for execution.

SBIB A byte store instruction for
auto-incrementing the base
address.

SHIA A base-address auto-
increment instruction for
storing halfwords.

SHIB A halfword store instruc-
tion for auto-incrementing
the base address.

SWIA A base-address auto-
increment instruction for
storing words.

SWIB A word store instruction for
auto-incrementing the base
address.

SDIA A base-address auto-
increment instruction for
storing doublewords

SDIB A doubleword store instruc-
tion for auto-incrementing
the base address.

SDD A double-register store in-
struction.

This instruction is split into two store instruc-
tions for execution.

SWD An instruction for storing the
lower 32 bits in double regis-
ters

For more information, see Appendix B-5 Storage instructions.

3.2.4 Cache instructions

www.t-head.cn 31

Chapter 3. Instruction Sets

Table 3.9: Cache instructions

Instruction Description Execution latency
（LMUL=1）

DCACHE.CALL An instruction that clears all dirty page table en-
tries in the D-Cache.

Blocked
Aperiodic

DCACHE.CIALL An instruction that clears all dirty page table en-
tries in the D-Cache and invalidates the entries.

DCACHE.CIPA An instruction that clears dirty page table entries
that match the specified physical addresses in the
D-Cache and invalidating the entries. (This in-
struction also acts on the L2 cache.)

DCACHE.CISW An instruction that clears dirty page table entries
in the D-Cache based on the specified way and set
and invalidates the entries.

DCACHE.CIVA An instruction that clears dirty page table entries
that match the specified virtual addresses in the D-
Cache and invalidates the entries. (This instruction
also acts on the L2 cache.)

DCACHE.CPA An instruction that clears dirty page table entries
that match the specified physical addresses in the
D-Cache. (This instruction also acts on the L2
cache.)

DCACHE.CPAL1 An instruction that clears dirty page table entries
that match the specified physical addresses in the
L1 D-Cache.

DCACHE.CSW An instruction that clears dirty page table entries
in the D-Cache based on the specified way and set.

DCACHE.CVA An instruction that clears dirty page table entries
that match the specified virtual addresses in the D-
Cache. (This instruction also acts on the L2 cache.)

DCACHE.CVAL1 An instruction that clears dirty page table entries
that match the specified virtual addresses in the L1
D-Cache.

DCACHE.IPA An instruction that invalidates page table entries
that match the specified physical addresses in the
D-Cache. (This instruction also acts on the L2
cache.)

DCACHE.ISW An instruction that invalidates page table entries in
the D-Cache based on the specified way and set.

Continued on next page

www.t-head.cn 32

Chapter 3. Instruction Sets

Table 3.9 – continued from previous page
Instruction Description Execution latency

（LMUL=1）
DCACHE.IVA An instruction that invalidates page table entries

that match the specified virtual addresses in the D-
Cache. (This instruction also acts on the L2 cache.)

DCACHE.IALL An instruction that invalidates all page table entries
in the D-Cache

ICACHE.IALL An instruction that invalidates all page table entries
in the I-Cache

Aperiodic

ICACHE.IALLS An instruction that invalidates all page table entries
in the I-Cache through broadcasting

ICACHE.IPA An instruction that invalidates page table entries
that match the specified physical addresses in the
I-Cache.

ICACHE.IVA An instruction that invalidates page table entries
that match the specified virtual addresses in the
I-Cache.

For more information, see Appendix B-1 Cache instructions.

3.2.5 Multi-core synchronization instructions

Table 3.10: Multi-core synchronization instructions

Instruction Description
SFENCE.VMAS A broadcast instruction for synchronizing virtual memory.
SYNC A synchronization instruction
SYNC.S A synchronization broadcast instruction
SYNC.I An instruction for synchronizing the clearing operation.
SYNC.IS A broadcast instruction for synchronizing the clearing operation.

For more information, see Appendix B-2 Multi-core synchronization instructions.

3.2.6 Half-precision floating-point instructions

www.t-head.cn 33

Chapter 3. Instruction Sets

Table 3.11: Half-precision floating-point instructions

Instruction Description Execution latency
Operation instructions
FADD.H A half-precision floating-point

add instruction.
3

FSUB.H A half-precision floating-point
subtract instruction.

3

FMUL.H A half-precision floating-point
multiply instruction.

3

FMADD.H A half-precision floating-point
multiply-add instruction.

4

FMSUB.H A half-precision floating-point
multiply-subtract instruction.

4

FNMADD.H A half-precision floating-point n
egate-(multiply-add) instruction.

4

FNMSUB.H A half-precision floating-point
negate -(multiply-subtract) in-
struction.

4

FDIV.H A half-precision floating-point di-
vide instruction.

4-7

FSQRT.H A half-precision floating-point
square-root instruction.

4-7

Sign injection instructions
FSGNJ.H A half-precision floating-point

sign-injection instruction
3

FSGNJN.H A half-precision floating-point
negate sign-injection instruction

3

FSGNJX.H A half-precision floating-point
XOR sign-injection instruction

3

Data transmission instructions
FMV.X.H A half-precision floating-point

read move instruction.
1+1

FMV.H.X A half-precision floating-point
write move instruction

1+1

Compare instructions
FMIN.H A half-precision floating-point

MIN instruction
3

FMAX.H A half-precision floating-point
MAX instruction.

3

Continued on next page

www.t-head.cn 34

Chapter 3. Instruction Sets

Table 3.11 – continued from previous page
Instruction Description Execution latency
FEQ.H A half-precision floating-point

compare equal instruction.
3+1 in split execution

FLT.H A half-precision floating-point
compare less than instruction.

3+1 in split execution

FLE.H A half-precision floating-point
compare less than or equal to in-
struction.

3+1 in split execution

Data type conversion instructions
FCVT.S.H An instruction that converts

a half-precision floating-point
number into a single-precision
floating-point number.

3

FCVT.H.S An instruction that converts
a single-precision floating-point
number into a half-precision
floating-point number.

3

FCVT.W.H An instruction that converts a
half-precision floating-point num-
ber into a signed integer.

3+1 in split execution

FCVT.WU.H An instruction that converts a
half-precision floating-point num-
ber into an unsigned integer.

3+1 in split execution

FCVT.H.W An instruction that converts
a signed integer into a half-
precision floating-point number

3+1 in split execution

FCVT.H.WU The instruction that converts
an unsigned integer into a half-
precision floating-point number.

3+1 in split execution

FCVT.L.H An instruction that converts a
half-precision floating-point num-
ber into a signed long integer.

3+1 in split execution

FCVT.LU.H An instruction that converts a
half-precision floating-point num-
ber into an unsigned long integer.

3+1 in split execution

FCVT.H.L An instruction that converts a
signed long integer into a half-
precision floating-point number.

3+1 in split execution

Continued on next page

www.t-head.cn 35

Chapter 3. Instruction Sets

Table 3.11 – continued from previous page
Instruction Description Execution latency
FCVT.H.LU An instruction that converts an

unsigned long integer into a half-
precision floating-point number.

3+1 in split execution

Memory store instructions
FLH A half-precision floating-point

load instruction
Weak order
LOAD: >=3
STORE: 1
STRONG ORDER

FSH A half-precision floating-point
store instruction.

Same as above

Floating-point classify instructions
FCLASS.H A single-precision floating-point

classify instruction
1+1

For more information, see Appendix B-6 Half-precision floating-point instructions .

www.t-head.cn 36

CHAPTER 4

CPU Modes and Registers

4.1 CPU modes

C908 supports three RISC-V privilege modes : machine mode (M-mode), supervisor mode (S-mode), and
user mode (U-mode). C908 runs programs in M-mode after reset. The three modes correspond to different
operation privileges and differ in the following aspects:

1. Register access

2. Use of privileged instructions

3. Memory access

The U-mode provides the lowest privileges.

User programs are allowed to access only the registers specific to the U-mode. This prevents user pro-
grams from accessing privileged information. The operating system manages and serves user programs by
coordinating their behaviors.

The S-mode provides higher privileges than the U-mode but lower privileges than the M-mode.

Programs running in S-mode are not allowed to access control registers specific to the M-mode and are limited
by physical memory protection (PMP). The page-based virtual memory acts as the core of the S-mode.

The M-mode has the highest privileges.

Programs running in M-mode have full access to memory, I/O resources, and underlying features required for
starting and configuring the system. By default, the CPU switches to the M-mode to respond to exceptions
and interrupts that occur in any mode unless the exceptions and interrupts are delegated.

37

Chapter 4. CPU Modes and Registers

Most instructions can run in all the three modes. However, some privileged instructions with major impact
on the system are available only in S-mode or M-mode. For more information, see Appendix A Standard
Instructions and Appendix B T-Head Extended Instructions.

The privilege mode in which an exception occurs is different from that in which the CPU responds to the
exception. The CPU switches to a higher privilege mode to respond to the exception, and switches back to
the lower privilege mode after the exception is handled.

4.2 Register view

The register view of C908 is shown in Fig. 4.1.

Fig. 4.1: Register view

4.3 General-purpose registers

C908 provides thirty-two 64-bit general-purpose registers that have the same features as those defined in
RISC-V. For more information, see Table 4.1.

www.t-head.cn 38

Chapter 4. CPU Modes and Registers

Table 4.1: General-purpose registers

Register ABI name Description
x0 zero A hardwired zero register.
x1 ra A return address register.
x2 sp A stack pointer register.
x3 gp A global pointer register.
x4 tp A thread pointer register.
x5 t0 A temporary/standby link register.
x6-7 t1-2 Temporary registers.
x8 s0/fp A reserved register/frame pointer register.
x9 s1 A reserved register.
x10-11 a0-1 Function argument/Return value registers.
x12-17 a2-7 Function argument registers.
x18-27 s2-11 Reserved registers.
x28-31 t3-6 Temporary registers.

The general-purpose registers are used to sore instruction operands, instruction execution results, and address
information.

4.4 Floating-point registers

In addition to standard RV64F instructions, C908 also supports floating-point half-precision computing and
provides 32 independent floating-point registers. These registers are accessible in U-mode, S-mode, and
M-mode.

Table 4.2: Floating-point registers

Register ABI name Description
f0-7 ft0-7 Floating-point temporary registers.
f8-9 fs0-1 Floating-point reserved registers.
f10-11 fa0-1 Floating-point argument/return value registers.
f12-17 fa2-7 Floating-point argument registers.
f18-27 fs2-11 Floating-point reserved registers.
f28-31 ft8-11 Floating-point temporary registers.

Unlike x0, f0 is not hardwired to 0, but its bit values are variable like other floating-point registers. A
single-precision floating-point number occupies only the lower 32 bits of a 64-bit floating-point register, and
the upper 32 bits must be set to 1; otherwise, the number will be considered nonnumeric. A half-precision
floating-point number occupies only the lower 16 bits of a 64-bit floating-point register, and the upper 48
bits must be set to 1; otherwise, the number will be considered nonnumeric.

www.t-head.cn 39

Chapter 4. CPU Modes and Registers

The independent floating-point registers help increase the register capacity and bandwidth, improving per-
formance of the CPU. Along with the floating-point registers, floating-point load and store instructions and
instructions for transferring data between floating-point and general-purpose registers are added.

4.4.1 Transmit data between floating-point and general-purpose registers

Data can be transmitted between floating-point and general-purpose registers through floating-point register
move instructions. Floating-point register move instructions include:

• FMV.X.H/FMV.H.X: A half-precision data move instruction for floating-point registers.

• FMV.X.W/FMV.W.X: A single-precision data move instruction for floating-point registers.

When half-precision, single-precision data is transmitted from a general-purpose register to a floating-point
register, the data format remains unchanged. Therefore, a program can directly use these registers without
converting their types.

For more information, see Appendix A-4 F instructions.

4.4.2 Maintain consistency of register precision

Floating-point registers can store half-precision, single-precision and integer data. For example, the type of
data stored in f1 depends on the last write operation, and may be any one of the four types.

Floating-point units (FPUs) do not detect data formats based on hardware. The hardware parses data
formats in a floating-point register only based on the executed floating-point instruction, regardless of the
data format in the last write operation in the register. In this case, the consistency of data precision in the
register is ensured only by the compiler or program.

4.5 Vector registers

C908 owns 32 independent vector registers that can be configured as 128-bit or 256-bit. These registers are
accessible in U-mode, S-mode, and M-mode. Vector registers exchange data with integer general-purpose
registers and floating-point registers through vector move instructions.

4.5.1 Transmit data between floating-point and general-purpose registers

Data can be transmitted between vector and general-purpose registers through integer vector register move
instructions. Integer vector register move instructions include:

• VMV.V.X: an instruction that moves data from an integer register to a vector register;

• VMV.S.X: an instruction that moves data from an integer register to element 0 of a vector register;

• VEXT.X.V: an integer vector get element instruction.

www.t-head.cn 40

Chapter 4. CPU Modes and Registers

4.5.2 Transmit data between floating-point and vector registers

Data can be transmitted between vector and floating-point registers through floating-point vector register
move instructions. Floating-point vector register move instructions include:

• VFMV.V.F: an instruction that moves data from a floating-point register to a vector register;

• VFMV.F.S: an instruction that moves data from element 0 of a vector register to a floating-point
register;

• VFMV.S.F: an instruction that moves data from a floating-point register to element 0 of the vector
register.

4.6 System control registers

4.6.1 Standard control registers

This section describes RISC-V standard control registers implemented in C908 by M-mode, S-mode, and
U-mode.

The RISC-V standard M-mode control registers implemented in C908 are described in Table 4.3.

Table 4.3: RISC-V standard M-mode control registers

Register Read/Write permission ID Description
M-mode information registers
mvendorid Read-only in M-mode 0xF11 A vendor ID register.
marchid Read-only in M-mode 0xF12 An architecture ID register.
mimpid Read-only in M-mode 0xF13 An M-mode hardware implementation

ID register.
mhartid Read-only in M-mode 0xF14 An M-mode logical kernel ID register.
M-mode exception configuration registers
mstatus Read/Write in M-mode 0x300 An M-mode CPU status register.
misa Read/Write in M-mode 0x301 An M-mode CPU instruction set at-

tribute register.
medeleg Read/Write in M-mode 0x302 An M-mode exception delegation con-

trol register.
mideleg Read/Write in M-mode 0x303 An M-mode interrupt delegation con-

trol register.
mie Read/Write in M-mode 0x304 An M-mode interrupt enable control

register.
Continued on next page

www.t-head.cn 41

Chapter 4. CPU Modes and Registers

Table 4.3 – continued from previous page
Register Read/Write permission ID Description
mtvec Read/Write in M-mode 0x305 An M-mode vector base address regis-

ter.
mcounteren Read/Write in M-mode 0x306 An M-mode counter enable control

register.
mcountinhibit Read/Write in M-mode 0x320 An M-mode count inhibit register.
M-mode exception handling registers
mscratch Read/Write in M-mode 0x340 An M-mode temporary data backup

register upon exceptions.
mepc Read/Write in M-mode 0x341 An M-mode exception program

counter.
mcause Read/Write in M-mode 0x342 An M-mode exception event cause reg-

ister.
mtval Read/Write in M-mode 0x343 An M-mode exception event vector

register.
mip Read/Write in M-mode 0x344 An M-mode interrupt pending state

register.
M-mode memory protection registers
pmpcfg0 Read/Write in M-mode 0x3A0 Physical memory protection configura-

tion register 0.
pmpaddr0 Read/Write in M-mode 0x3B0 Physical memory protection base ad-

dress register 0.
⋯

pmpaddr7 Read/Write in M-mode 0x3B7 Physical memory protection base ad-
dress register 7.

M-mode counters/timers
mcycle Read/Write in M-mode 0xB00 An M-mode cycle counter.
minstret Read/Write in M-mode 0xB02 An M-mode retired instruction

counter.
mhpmcounter3 Read/Write in M-mode 0xB03 Machine-mode counter 3.
⋯

mhpmcounter31 Read/Write in M-mode 0xB1F M-mode counter 31.
M-mode counter configuration registers
mhpmevent3 Read/Write in M-mode 0x323 M-mode event select register 3.
⋯

mhpmevent31 Read/Write in M-mode 0x33F M-mode event select register 31.

The RISC-V standard S-mode control registers implemented in C908 are described in Table 4.4.

www.t-head.cn 42

Chapter 4. CPU Modes and Registers

Table 4.4: RISC-V standard S-mode control registers

Register Read/Write permission ID Description
S-mode exception configuration registers
sstatus Read/Write in S-mode 0x100 An S-mode CPU status

register.
sie Read/Write in S-mode 0x104 An S-mode interrupt en-

able control register.
stvec Read/Write in S-mode 0x105 An S-mode vector base ad-

dress register.
scounteren Read/Write in S-mode 0x106 An S-mode counter enable

control register.
S-mode exception handling registers
sscratch Read/Write in S-mode 0x140 An S-mode temporary data

backup register upon ex-
ceptions.

sepc Read/Write in S-mode 0x141 An S-mode exception pro-
gram counter.

scause Read/Write in S-mode 0x142 An S-mode exception event
cause register.

stval Read/Write in S-mode 0x143 An S-mode exception event
vector register.

sip Read/Write in S-mode 0x144 An S-mode interrupt pend-
ing state register.

S-mode address translation registers
satp Read/Write in S-mode 0x180 An S-mode virtual address

translation
and protection register.

The RISC-V standard user-mode control registers implemented in C908 are described in Table 4.5.

www.t-head.cn 43

Chapter 4. CPU Modes and Registers

Table 4.5: RISC-V standard U-mode control registers

Register Read/Write permission ID Description
U-mode floating-point control registers
fflags Read/Write in U-mode 0x001 A floating-point

accrued exception sta-
tus register.

frm Read/Write in U-mode 0x002 A floating-point
dynamic rounding mode
control register.

fcsr Read/Write in U-mode 0x003 A floating-point control
and status register.

U-mode counters/timers
cycle Read/Write in U-mode 0xC00 A U-mode cycle

counter.
time Read/Write in U-mode 0xC01 A U-mode timer.
instret Read/Write in U-mode 0xC02 A U-mode retired in-

struction counter.
hpmcounter3 Read/Write in U-mode 0xC03 A U-mode counter 3.
⋯

hpmcounter31 Read/Write in U-mode 0xC1F U-mode counter 31.

4.6.2 Extended control registers

This section describes extended control registers implemented in C908 by M-mode, S-mode, and U-mode.

The extended M-mode control registers of C908 are described in Table 4.6.

www.t-head.cn 44

Chapter 4. CPU Modes and Registers

Table 4.6: Extended M-mode control registers of C908

Register Read/Write permission ID Description
Extended M-mode CPU control and status registers
mxstatus Read/Write in M-mode 0x7C0 An extended M-mode status regis-

ter.
mhcr Read/Write in M-mode 0x7C1 An M-mode hardware configura-

tion register.
mcor Read/Write in M-mode 0x7C2 An M-mode hardware operation

register.
mccr2 Read/Write in M-mode 0x7C3 An M-mode L2 cache control reg-

ister.
mhint Read/Write in M-mode 0x7C5 An M-mode implicit operation reg-

ister.
mrvbr Read-only in M-mode 0x7C7 An M-mode reset

vector base address register.
mcounterwen Read/Write in M-mode 0x7C9 An S-mode counter write enable

register.
mcounterinten Read/Write in M-mode 0x7CA An M-mode event interrupt enable

register.
mcounterof Read/Write in M-mode 0x7CB An M-mode overflow flag register.
Extended M-mode cache access registers
mcins Read/Write in M-mode 0x7D2 An M-mode cache instruction reg-

ister.
mcindex Read/Write in M-mode 0x7D3 An M-mode cache access index reg-

ister.
mcdata0 Read/Write in M-mode 0x7D4 An M-mode cache data register 0.
mcdata1 Read/Write in M-mode 0x7D5 An M-mode cache data register 1.
Extended M-mode CPU model registers
mcpuid Read-only in M-mode 0xFC0 An M-mode CPU model register.
mapbaddr Read-only in M-mode 0xFC1 An on-chip bus base address regis-

ter.
Extended multi-core registers
msmpr Read/Write in M-mode 0x7F3 A snooping enable register.

For more information, see Appendix C-1 M-mode control registers.

The extended S-mode control registers of C908 are described in Table 4.7.

www.t-head.cn 45

Chapter 4. CPU Modes and Registers

Table 4.7: Extended S-mode control registers of C908

Register Read/Write permission ID Description
Extended S-mode CPU control and status registers
sxstatus Read/Write in S-mode 0x5C0 An extended S-mode

status register.
shcr Read/Write in S-mode 0x5C1 An S-mode hardware

control register.
scounterinten Read/Write in S-mode 0x5C4 An S-mode event inter-

rupt enable register.
scounterof Read/Write in S-mode 0x5C5 An S-mode event over-

flow flag register.
scycle Read/Write in S-mode 0x5E0 An S-mode cycle

counter.
shpmcounter3 Read/Write in S-mode 0x5E3 S-mode counter 3.
⋯

shpmcounter31 Read/Write in S-mode 0x5FF S-mode counter 31.
Extended S-mode MMU registers
smir Read/Write in S-mode 0x9C0 An S-mode MMU index

register.
smel Read/Write in S-mode 0x9C1 An S-mode MMU En-

tryLo register.
smeh Read/Write in S-mode 0x9C2 An S-mode MMU En-

tryHi register.
smcir Read/Write in S-mode 0x9C3 An S-mode MMU con-

trol register.

For more information, see Appendix C-2 S-mode control registers.

The extended U-mode control registers of C908 are described in Table 4.8.

Table 4.8: Extended U-mode control registers of C908

Register Read/Write permis-
sion

ID Description

Extended U-mode floating-point control registers
fxcr Read/Write in U-

mode
0x800 An extended U-mode floating-point control reg-

ister.

For more information, see Appendix C-3 U-mode control registers.

www.t-head.cn 46

Chapter 4. CPU Modes and Registers

4.7 Data formats

4.7.1 Integer data format

Values in a register are not distinguished by big-endian or little-endian type, but by signed or unsigned type.
Values in a register are arranged from right to left with the least significant bit being the rightmost bit and
the most significant bit being the leftmost bit, as shown in Fig. 4.2.

Fig. 4.2: Integer data structure in registers

4.7.2 Floating-point data format

FPUs of C908 comply with the RISC-V standard and the ANSI/IEEE 754-2008 standard for floating-point
arithmetic, and support half-precision, single-precision computation. The floating-point data format is shown
in Fig. 4.3. Single-precision data occupies only the lower 32 bits of a 64-bit floating-point register, and the
upper 32 bits must be set to 1; otherwise, the data will be considered nonnumeric. Half-precision data
occupies only the lower 16 bits of a 64-bit floating-point register, and the upper 48 bits must be set to 1;
otherwise, the data will be considered nonnumeric.

4.8 Big-endian and little-endian

The concepts of big-endian and little-endian are proposed with respect to the data storage formats of mem-
ories. In the big-endian scheme, the most significant byte of an address is stored to the lower bits in physical
memory. In the little-endian scheme, the most significant byte of an address is stored to the upper bits in
physical memory. The data formats are shown in Fig. 4.4.

C908 supports only the little-endian scheme, and supports binary integers with standard complements.
The length of each instruction operand can be explicitly encoded in programs (load/store instructions) or

www.t-head.cn 47

Chapter 4. CPU Modes and Registers

Fig. 4.3: Floating-point data structure in registers

Fig. 4.4: Data structure in memory

www.t-head.cn 48

Chapter 4. CPU Modes and Registers

implicitly indicated in instruction operations (index operation and byte extraction) Usually, an instruction
receives a 64-bit operand and generates a 64-bit result.

www.t-head.cn 49

CHAPTER 5

Exceptions and Interrupts

5.1 Overview

Exception handling is a core feature of a CPU. Exceptions include instruction exceptions and external
interrupts. When some exception events occur, the CPU is enabled to respond to these events. The events
include hardware errors, instruction execution errors, and user program request services.

The key of exception handling is to save the operating status of the CPU when an exception occurs and
resume the status when the CPU exits exception handling. Exceptions can be identified in all stages of
the instruction pipeline. The CPU hardware ensures that subsequent instructions do not change the CPU
status. Exceptions are handled at the boundary of an instruction. To be specific, the CPU responds to the
exceptions when the instruction retires, and saves the address of the to-be-executed instruction when the
CPU exits exception handling. Even if exceptions are identified before an instruction retires, the CPU does
not handle the exceptions until the instruction retires. To ensure proper functioning of programs, the CPU
does not repeatedly run the executed instructions after exception handling is completed.

In machine mode (M-mode), the CPU responds to an instruction exception or an external interrupt in the
following procedure:

Step 1: Save the exception PC to the mepc register.

Step 2: Update the mcause and mtval registers based on the exception type.

Step 3: Save the machine interrupt-enable (MIE) bit in the mstatus register to the MPIE field, clear the
MIE field, and prohibit responses to interrupts.

50

Chapter 5. Exceptions and Interrupts

Step 4: Save the privilege mode applied before the exception occurs to the MPP field in the mstatus register,
and switch to the M-mode.

Step 5: Obtain the entry address of exception program based on the base address and mode in the mtvec
register, and run instructions of the exception program in sequence.

C908 conforms to the exception vector table defined in RISC-V, as shown in Table 5.1.

Table 5.1: Exception and interrupt vector assignment

Interrupt flag Exception vector ID Description
1 0 Unavailable.
1 1 A software interrupt in supervisor mode (S-mode).
1 2 Reserved.
1 3 A software interrupt in M-mode.
1 4 Unavailable.
1 5 A timer interrupt in S-mode.
1 6 Reserved.
1 7 The timer interrupt in M-mode.
1 8 Unavailable.
1 9 An external interrupt in S-mode.
1 10 Reserved.
1 11 An external interrupt in M-mode.
1 17 A performance detection overflow interrupt.
1 Others Reserved.
0 0 Unavailable.
0 1 A fetch instruction access error exception.
0 2 An illegal instruction exception.
0 3 A debug breakpoint exception.
0 4 A load instruction unaligned access exception.
0 5 A load instruction access error exception.
0 6 A store/atomic instruction unaligned access exception.
0 7 A store/atomic instruction access error exception.
0 8 A user-mode (U-mode) environment call exception.
0 9 An S-mode environment call exception.
0 10 Reserved.
0 11 An M-mode environment call exception.
0 12 An instruction fetch page error exception.
0 13 A load instruction page error exception.
0 14 Reserved.
0 15 A store/atomic instruction page error exception.
0 >= 16 Reserved.

www.t-head.cn 51

Chapter 5. Exceptions and Interrupts

C908 supports exception and interrupt delegation. When an exception or interrupt occurs in S-mode, the
CPU switches to the M-mode for handling. This causes performance loss of the CPU. Delegation enables
the CPU to respond to exceptions and interrupts in S-mode. Exceptions that occur in M-mode are not
delegated, but still handled in M-mode. Interrupts that occur in M-mode can be delegated to the S-mode
for handling, except the external interrupts, software interrupts, and timer interrupts that occur in M-mode.
In M-mode, the CPU does not respond to delegated interrupts.

In S-mode and U-mode, the CPU can respond to all interrupts and exceptions that meet the specified criteria.
The CPU responds to undelegated exceptions and interrupts in M-mode, and updates the machine-mode
exception handling registers. The CPU responds to delegated exceptions and interrupts in S-mode, and
updates the S-mode exception handling registers.

5.2 Exceptions

5.2.1 Exception handling

In M-mode, the CPU responds to illegal instruction or access error exceptions in the following procedure:

Step 1: Save the exception PC to the mepc register.

Step 2: Set the interrupt flag in the mcause register to 0, write the exception ID to the mcause register,
and update the mtval register based on the rules defined in Table 5.2.

Step 3: Save the machine interrupt-enable (MIE) bit in the mstatus register to the MPIE field, clear the
MIE field, and prohibit responses to interrupts.

Step 4: Save the privilege mode applied before the exception occurs to the MPP field in the mstatus register,
and switch to the M-mode.

Step 5: The PC fetches an instruction from the base address in the mtvec register and executes the
instruction. The instruction is usually a jump instruction for jumping to the top-level handler. The handler
analyzes the mcause register to obtain the exception ID and calls the handler corresponding to the exception
ID.

www.t-head.cn 52

Chapter 5. Exceptions and Interrupts

Table 5.2: Updates to mtval when exceptions occur

Exception vec-
tor ID

Exception mtval update

1 Fetch instruction access error exception Virtual address accessed by the fetch in-
struction

2 Illegal instruction exception Instruction code
3 Debug breakpoint exception 0
4 Load instruction unaligned access excep-

tion
Virtual address accessed by the load instruc-
tion

5 Load instruction access error exception 0
6 Store/Atomic instruction unaligned ac-

cess exception
Virtual address accessed by the
store/atomic instruction

7 Store/Atomic instruction access error ex-
ception

0

8 U-mode environment call exception 0
9 S-mode environment call exception 0
11 M-mode environment call exception 0
12 Fetch instruction page error exception Virtual address accessed by the fetch in-

struction
13 Load instruction page access exception Virtual address accessed by the load instruc-

tion
15 Store/Atomic instruction page error ex-

ception
Virtual address accessed by the
store/atomic instruction

5.2.2 Return from exceptions

You can run the mret instruction to return from an exception. In this case, the CPU performs the following
operations:

• Restore the mepc register to the PC. (The mepc register stores the PC applied when the exception
occurs. You can adjust the mepc register to skip the exception instruction; otherwise, the exception
instruction will be executed again.)

• Restore the value of the MPIE field in the mstatus register to the MIE field in the mstatus register.

• Restore the privilege mode applied before the exception occurs from the MPP field in the mstatus
register.

5.3 Interrupts

www.t-head.cn 53

Chapter 5. Exceptions and Interrupts

5.3.1 Interrupt priorities

When receiving multiple interrupt requests, the CPU responds to them by their priorities (in descending
order):

• L1 ECC interrupt

• M-mode external interrupt

• M-mode software interrupt

• M-mode timer interrupt

• S-mode external interrupt

• S-mode software interrupt

• S-mode timer interrupt

• PMU overflow interrupt

• L1 ECC interrupt (delegated)

• S-mode external interrupt (delegated)

• S-mode software interrupt (delegated)

• S-mode timer interrupt (delegated)

• PMU overflow interrupt (delegated)

5.3.2 Interrupt responses

In M-mode, the CPU responds to an interrupt in the following procedure:

Step 1: Execute the current instruction and save the PC of the next instruction to the mepc register.

Step 2: Set the interrupt flag in the mcause register to 1, write the interrupt ID to the mcause register, and
update the mtval register to 0.

Step 3: Save the machine interrupt-enable (MIE) bit in the mstatus register to the MPIE field, clear the
MIE field, and prohibit responses to interrupts.

Step 4: Save the privilege mode applied before the interrupt occurs to the MPP field in the mstatus register,
and switch to the M-mode.

Step 5 (The Mode field in the mtvec register is 0, indicating a direct interrupt): The PC fetches
an instruction from the base address in the mtvec register and executes the instruction. The instruction is
usually a jump instruction for jumping to the top-level handler. The handler analyzes the mcause register
to obtain the interrupt ID and calls the handler corresponding to the interrupt ID.

Step 5 (The Mode field in the mtvec register is 1, indicating a vectored interrupt): The PC
fetches an instruction from the address calculated in (Base address in the mtvec register + 4 × Interrupt ID)

www.t-head.cn 54

Chapter 5. Exceptions and Interrupts

and executes the instruction. The instruction is usually a jump instruction for jumping to the corresponding
interrupt handler.

5.3.3 Return from interrupts

You can run the mret instruction to return from an interrupt. In this case, the CPU performs the following
operations:

• Restore the mepc register to the PC. (The mepc register stores the PC of the next instruction and
therefore does not need to be adjusted.)

• Restore the value of the MPIE field in the mstatus register to the MIE field in the mstatus register.

• Restore the privilege mode applied before the interrupt occurs from the MPP field in the mstatus
register.

5.3.4 Asynchronous errors

In very rare cases, the processor may exhibit behavior known as “asynchronous errors,”which refers to
errors caused by an instruction that do not appear at the retirement of that instruction. For example, the
CPU executes a load instruction and the bus returns an error. Due to the fast retirement of instructions in
the pipeline, the load instruction has already retired by the time the bus produces an error.

It should be noted that the probability of “asynchronous errors”occurring in actual systems is extremely
low, and once they occur, it means that the system has encountered a fatal error. In C908, ECC verification
errors or bus errors are considered “asynchronous errors”and are reported through interrupts.

www.t-head.cn 55

CHAPTER 6

Memory Model

6.1 Overview

6.1.1 Memory attributes

C908 supports two memory types: memory and device, which are distinguished by the SO bit. The memory
supports speculative execution and out-of-order execution. It is further classified into cacheable memory
and non-cacheable memory. The device supports only non-speculative in-order execution and therefore is
non-cacheable. It is further classified into bufferable device and non-bufferable device. Bufferable indicates
that a response to a write request can be quickly returned on an intermediate node. Non-bufferable indicates
that a response to a write request is returned only after the end device completes writing.

To share data among multiple cores, C908 allows you to set the shareable (SH) page attribute. A shareable
page is shared among multiple cores, and the hardware maintains data coherence. A non-shareable page
is exclusively occupied by a core, and the software, instead of hardware, maintains data coherence among
multiple cores.

The SH attribute of the cacheable memory is configurable. The non-cacheable memory and device are
shareable by default, and you cannot modify their SH attributes.

In addition, C908 allows you to set the security (SEC) page attribute. If you don’t have any special
requirements for page security attributes, the default configuration is set to 0.

Table 6.1 describes the page attributes corresponding to each memory type.

56

Chapter 6. Memory Model

Table 6.1: Memory types

Memory type SO C B SH SEC
Cacheable memory 0 1 Configurable Configurable Reserved
Non-cacheable memory 0 0 Configurable 1 Reserved
Bufferable device 1 0 1 1 Reserved
Non-bufferable device 1 0 0 1 Reserved

The CPU can obtain the page attribute of an address from the sysmap.h file or a page table entry (PTE).
The two methods are described as follows:

1. Page attributes of addresses are determined by the sysmap.h file if virtual addresses are not translated
into physical addresses, that is, the machine mode (M-mode) or MMU is disabled.

2. Page attributes of addresses depend on the MAEE field in the mxstatus register if virtual addresses are
translated into physical addresses, that is, the CPU is not in M-mode and the MMU is enabled. If the MAEE
field is enabled, page attributes of addresses are determined by page attributes extended in the corresponding
PTEs. If the MAEE field is disabled, page attributes of addresses are determined by the sysmap.h file.

sysmap.h is an extended configuration file of C908 that is open to users. You can define page attributes for
different address ranges as required.

sysmap.h allows you to set page attributes for up to 8 address spaces. The largest address (non-inclusive)
of address space i (i = 0 to 7) is defined by the SYSMAP_BASE_ADDRi (i = 0 to 7) macro. The smallest
address (inclusive) is defined by the SYSMAP_BASE_ADDR(i - 1) macro. That is,

SYSMAP_BASE_ADDR(i - 1) <= Address of address space i < SYSMAP_BASE_ADDRi.

The smallest address of address space 0 is 0x0. Page attributes of memory addresses beyond the eight address
spaces defined in the sysmap.h file are cacheable/bufferable/shareable/security by default. The upper and
lower boundaries of each address space is 4 KB aligned. Therefore, the SYSMAP_BASE_ADDRi macro
defines the upper 28 bits of an address.

Page attributes of memory addresses within address space i (i = 0 to 7) are defined by the SYSMAP_FLAGi
(i = 0 to 7) macro. The attribute layout is shown in :Fig. 6.1 .

Fig. 6.1: Address attributes in the sysmap.h file

6.2 SYSMAP configuration reference

• Attribute definition of address space Range 0: 40’h0 <= addr0[39:0] <40’h01000 000, flg0 = 5’
b01111. This address space range includes parts of INST_RAM and DATA_RAM. Therefore, set the

www.t-head.cn 57

Chapter 6. Memory Model

attribute to cacheable. Attribute definition:

`define SYSMAP_BASE_ADDR0 28'h01000

`define SYSMAP_FLG0 5'b01111

• Attribute definition of address space Range 1: 40’h01000 000 <= addr1[39:0] < 40’h02000 000, flg1
= 5’b10000. This address space range covers the write addresses of special functions (such as the
print function) and DATA_RAM. Therefore, set the attribute to so to ensure that operation requests
can be sent from the core to the bus. Attribute definition:

`define SYSMAP_BASE_ADDR1 28'h02000

`define SYSMAP_FLG1 5'b10010

• Attribute definition of address space Range 2: 40’h02000 000 <= addr2[39:0] < 40’h0d000 000,
flg2=5’b10000. This address space mainly allocated as APB address space to ensure that operations
are strictly executed in order. Attribute definition:

`define SYSMAP_BASE_ADDR2 28'hd0000

`define SYSMAP_FLG2 5'b10010

• Attribute definition of address space Range 3: 40’h0d000 000 <= addr3[39:0] < 40’heffff 000, flg3=5’
b01101. This address space configured as a non-shareable cache space, and only for internal use in
SMART SOC.Attribute definition:

`define SYSMAP_BASE_ADDR3 28'heffff

`define SYSMAP_FLG3 5'b01101

• Attribute definition of address space Range 4: 40’heffff 000 <= addr4[39:0] < 40’hfffff 000, flg4=5’
b01111. This address space correspond to an invalid RAM section on the SMART with no practical
meaning. Attribute definition:

`define SYSMAP_BASE_ADDR4 28'hfffff

`define SYSMAP_FLG4 5'b01111

• Attribute definition of address space Range 5: 40’h02000 000 <= addr5[39:0] < 40’h4000000 000,
flg5=5’b01111. This address space correspond to an invalid RAM section on the SMART with no
practical meaning. Attribute definition:

www.t-head.cn 58

Chapter 6. Memory Model

`define SYSMAP_BASE_ADDR5 28'h4000000

`define SYSMAP_FLG5 5'b01111

• Attribute definition of address space Range 6: 40’h4000000 000 <= addr6[39:0] <40’h5000000 000,
flg6=5’b10000. This address space correspond to an invalid RAM section on the SMART with no
practical meaning. Attribute definition:

`define SYSMAP_BASE_ADDR6 28'h5000000

`define SYSMAP_FLG6 5'b10010

• Attribute definition of address space Range 7: 40’h5000000 000 <= addr7[39:0] < 40’hfffffff 000,
flg7=5’b01111. This address space correspond to an invalid RAM section on the SMART with no
practical meaning. Attribute definition:

`define SYSMAP_BASE_ADDR7 28'hfffffff

`define SYSMAP_FLG7 5'b01111

6.2.1 Memory ordering model

C908MP adopts a weak memory ordering model, which is defined as follows:

• Ordering of access to the same address is maintained among multiple cores, including read after read
(RAR), write after write (WAW), write after read (WAR), add read after write (RAW).

• Weak ordering of access to different addresses is allowed among multiple cores, including RAR, WAW,
WAR, add RAW.

• Atomic other-multi-copy is ensured. When a core is able to obtain written data of another core, other
cores must also be able to obtain the data. However, when a core is able to obtain its own written
data, it is not required that other cores be able to obtain the data.

Weak memory ordering causes inconsistency between the actual read/write order among multiple cores and
the access order defined by the program. Therefore, C908 provides extended SYNC instructions to enforce
memory access ordering in software.

SYNC instructions define the execution order of all instructions, ensuring that all instructions preceding a
SYNC instruction are executed before the SYNC instruction. In addition, SYNC instructions can also be
used to synchronize instruction memory. After instructions preceding a SYNC instruction are executed, the
SYNC instruction clears the pipeline and re-fetches instructions. For more information, see Table 6.2.

www.t-head.cn 59

Chapter 6. Memory Model

Table 6.2: SYNC instructions

Mnemonic Description Scope
SYNC.IS Synchronize data and instruction memory Shareable
SYNC.I Synchronize data and instruction memory Non-shareable
SYNC.S Synchronize data memory Shareable
SYNC Synchronize data memory Non-shareable

6.3 MMU

6.3.1 Overview

The memory management unit (MMU) of C908 complies with the RISC-V SV39/SV48 standard. It provides
the following features:

• Address translation: Translates 39-bit virtual addresses to 40-bit physical addresses.

• Page protection: Checks the read/write/execution permissions of page visitors.

• Page attribute management: Extends address attribute bits and obtains page attributes based on
access addresses for further processing by the system.

In C908, SXLEN is fixed as 64 bits, and the MMU performs SV39/SV48 address translation according to
64-bit virtual addresses.

C908 supports U Mode configured as either 32-bit or 64-bit. When UXL is configured as 32 bits:

• The MMU performs SV39/SV48 address translation according to 32-bit virtual addresses.

• The high 32 bits of the virtual address must be 0, or a page fault exception will occur.

6.3.2 TLB

The MMU uses translation lookaside buffers (TLBs) to implement its features. A TLB stores virtual ad-
dresses used when the CPU accesses the memory. Before translating a virtual address, the MMU checks the
page attributes in the TLB and outputs a physical address corresponding to the virtual address.

The MMU of C908 uses two levels of TLBs: the uTLB at level 1 and the jTLB at level 2. The uTLB includes
the I-uTLB and the D-uTLB. After the CPU is reset, the hardware invalidates all entries in the uTLB and
the jTLB, without the need of initializing software.

The I-uTLB provides 32 fully associative entries for storing pages in 4 KB, 2 MB, or 1 GB size. When an
instruction fetch request hits the I-uTLB, the physical address and the corresponding permission attribute
can be obtained in the current cycle.

www.t-head.cn 60

Chapter 6. Memory Model

The D-uTLB provides 17 fully associative entries for storing pages in 4 KB, 2 MB, or 1 GB size. When a
load/store request hits the D-uTLB, the physical address and the corresponding permission attribute can be
obtained in the current cycle.

The jTLB is a 4-way set-associative cache shared by instructions and data. It provides 1024 entries for
storing pages in 4 KB, 2 MB, or 1 GB size. When a request misses the uTLB but hits the jTLB, the physical
address and the corresponding permission attribute will be returned within at least three cycles.

6.3.3 Page Table Format

The MMU is used to translate virtual addresses into physical addresses and check corresponding permissions.
Specific address mappings and corresponding permissions are configured by the operating system and stored
in page tables.

C908 implements address translation through indexing by at most three levels of page tables. The MMU
accesses the L1 page table to obtain the base address of an L2 page table and the corresponding permission
attributes, accesses the L2 page table to obtain the base address of an L3 page table and the corresponding
permission attributes, and accesses the L3 page table to obtain the final physical address and the corre-
sponding permission attributes. The MMU may obtain the final physical address, that is, a leaf table entry,
at each level of access. The virtual page number (VPN) consists of 27 bits and is divided into three 9-bit
VPN[i]. A part of the VPN is used for indexing in each access.

Content of leaf table entries is cached in the TLB to accelerate address translation. The content includes
physical addresses translated from virtual addresses and corresponding permission attributes. If the uTLB
is missed, the MMU accesses the jTLB. If the jTLB is missed, the MMU enables a hardware page table walk
to access the memory to obtain the final address translation result.

A page table stores entry addresses of next-level page tables or physical information of the final page table.
The page table entry (PTE) is shown in Fig. 6.2 and Fig. 6.3 :

Fig. 6.2: Page table structure(Standard Mode)

Fig. 6.3: Page table structure(T-Head Mode)

1. Basic Page Attributes

PTE[9:0] are the basic attribute bits of the page table and the functions of each bit are described
below.

RSW – Reserved for Software

www.t-head.cn 61

Chapter 6. Memory Model

A bit reserved for software to implement custom page table features. The default value
is 2’b00.

D – Dirty

It indicates whether data can be/has been written to the page.

1’b0: indicates that data has not been written/cannot be written to the page.

1’b1: indicates that data has been written/can be written to the page.

When the D bit is 0, a write operation to the page will trigger a page fault (store)
exception. You can maintain the meanings of values of the D bit in the exception
program through software.

A – Accessed

When the A bit is 1, it indicates that the page is accessible. When the A bit is 0,
it indicates that the page is inaccessible. Access to the page will trigger a page fault
exception for the corresponding access type.

1’b0: indicates that the page is accessible.

1’b1: indicates that the page is accessible.

G – Global

The global page ID, which indicates whether the page can be shared by multiple pro-
cesses.

1’b0: indicates that the page is non-shareable and that the ASID is exclusive.

1’b1: indicates that the page is shareable.

U – User

Indicates whether the page is accessible in user mode (U-mode).

1’b0: indicates that the page is inaccessible in U-mode. Access to the page in U-mode
will trigger a page fault exception.

1’b1: indicates that the page is accessible in U-mode.

X W R: executable, writable, readable

The meaning of the XWR bit combination is specified as:

www.t-head.cn 62

Chapter 6. Memory Model

Table 6.3: XWR permissions

X W R Meaning
0 0 0 Pointer to next level of page table
0 0 1 Read-only page
0 1 0 Reserved for future use
0 1 1 Read-write page
1 0 0 Execute-only page
1 0 1 Read-execute page
1 1 0 Reserved for future page
1 1 1 Read-write-execute page

V – Valid

Indicates whether the physical page has been mapped to a virtual page. If the V bit
of a page is 0, access to the page will cause a page fault exception.

1’b0: indicates that the physical page has not been mapped to a virtual page.

1’b1: indicates that the physical page has been mapped to a virtual page.

2. Physical page number

PTE[37:10] are the physical page number (PPN) of the page table. The physical address of the C908 is
fixed at 40 bits, with PPN occupies 28 bits of space, divided into segments every 9 bits.PPN[i] indicates
the PPN corresponding to each level of page table.

3. Page extension attributes

The extension attributes of the page table are divided into two modes: standard extension mode and
T-Head extension mode.

When mxstatus.maee is 0, the page table organisation follows the standard extension mode.The stan-
dard extended mode is compatible with the SVNAPOT and SVPBMT standard extended features,
which are implemented by using the N bit of PTE[63] and the PBMT bit of PTE[62:61] respectively.
The N bit indicates that the current table entry is a NAPOT size-extended table entry, and the size
covered by the table entry is a contiguous area represented by a power-of-two index. The size is shown
in the table below.

6.3.4 Address translation process

The address translation process is described as follows:

If the TLB is hit when the CPU attempts to access a virtual address, the CPU directly obtains the physical
address and the corresponding attributes from the TLB. If the TLB is missed, the MMU performs the
following steps to translate the virtual address:

www.t-head.cn 63

Chapter 6. Memory Model

1. Obtain the access address {satp.PPN, VPN[2], 3’b0} of the L1 page table, and access the D-
Cache/memory based on the address to obtain a 64-bit PTE of the L1 page table.

2. Check whether the PTE conforms to the physical memory protection (PMP) permission. If no, generate
the corresponding access error exception. If yes, determine whether the X/W/R bit meets the condition
of the leaf page table based on the rules shown in xrw . If yes, the final physical address has been
found. Then go to step 3. If no, obtain the access address {PTE.PPN, next-level VPN, 3’b0} of the
next-level page table, and access the D-Cache/memory again.

3. After the leaf page table is found, compare the X/W/R/L bit in the PMP register with the X/W/R
bit in the PTE to obtain the minimum permissions, check the permissions, and write the content of
the PTE back to jTLB.

4. If permission violation is found in any PMP check, generate the corresponding access error exception
based on the access type.

5. Generate a page fault exception in the following three cases: the leaf page table is found but the access
type does not conform to the setting of the A/D/X/W/R/U bit, no leaf page table is found after three
accesses, or an access error is generated during access to the D-Cache/memory.

6. If the leaf page table is found in less than three accesses, a large page table has been obtained. In this
case, check whether the PPN of the large page table is aligned based on the page size. If no, generate
a page fault exception.

6.3.5 System control registers

In addition to the standard satp register, the MMU of C908 provides the extended smir, smcir, supervisor-
mode (S-mode) entry low (smel), and S-mode entry high (smeh) control registers. You can use the extended
registers to directly read, write, probe, and invalidate the TLB.

6.3.5.1 Supervisor address translation and protection register (satp)

The satp register is an MMU control register defined in the SV39/48 standard, with a register width of
64-bit, and it is readable and writable in both M/S modes, but not readable or writable in U mode.

Fig. 6.4: SATP Register Descriptions

Mode: MMU address translation mode

The MODE field indicates the virtual address translation mode, and the standard encoding is
shown in Table 6.4 . The C908 implements three modes of SATP MODE field: Bare (4’h0),
SV39 (4’h8), and SV48 (4’h9).

www.t-head.cn 64

Chapter 6. Memory Model

When the Linux operating system boots, it determines whether the current system uses the
SV39 or SV48 mode. Once determined, there will be no switching between SV39 and SV48, only
switching between Bare and SV39/48.

Table 6.4: MMU address translation mode

RV64
Value Name Description
0 Bare No translation or protection
1-7 - Reserved
8 Sv39 Page-based 39-bit virtual addressing
9 Sv48 Page-based 48-bit virtual addressing
10 Sv57 Reserved for page-based 57-bit virtual addressing
11 Sv64 Reserved for page-based 64-bit virtual addressing
12-15 - Reserved

ASID: the current address space identifier (ASID)

Indicates the ASID of the current program. When a jTLB miss occurs during an address transla-
tion request and hardware backfilling is required, the jTLB uses the ASID value from the initial
miss request, concatenates it with the page table content, and backfills it into the table entry.

PPN: root PPN for hardware writeback

The PPN field defines the root PPN for hardware backfilling, which is used to form the high-order
address of the first-level page table initiated by hardware backfilling. For the specific hardware
backfilling process, please refer to the Address Translation Process.

6.3.5.2 smcir register

The smcir register enables you to probe, read, write, and invalidate the TLB.

Fig. 6.5: Smcir Register Description

TLBP: TLB probe

Indicates the operation of probing the TLB based on the smeh register.

When the TLB is hit, the value of the smir register is updated to the serial number of the TLB.

www.t-head.cn 65

Chapter 6. Memory Model

TLBR: TLB read

Indicates the operation of reading values of corresponding TLB entries based on indexes in the smir register,
and updating the smeh and smel registers based on the values.

TLBWI: TLB indexed write

Indicates the operation of writing values of the smeh and smel registers to corresponding TLB entries based
on indexes in the smir register.

TLBWR: TLB random write

Indicates the operation of writing values of the smeh and smel registers to corresponding TLB entries based
on indexes in the random register.

TLBIASID: TLB invalidation by ASID

Indicates the operation of invalidating all TLB entries that match the specified ASID.

TLBIALL: TLB initialization

Indicates the operation of invalidating all TLB entries and initializing the TLB.

TLBII: TLB invalidation by index

Indicates the operation of invalidating all TLB entries that match the specified index in the smir register.

TLBIAW: TLB invalidation by world

Indicates the operation of invalidating all TLB entries corresponding to the trustable or non-trustable world.

This field is available only when trusted execution environment (TEE) extension is configured. It has not
been implemented in C908.

ASID: the ASID used

Indicates the ASID used for matching in the TLBIASID operation. The smcir register enables you to probe,
read, write, and invalidate the TLB.

6.3.5.3 smir register

The smir register is used to index the TLB. In TLB probing, the index of a hit entry is updated. In TLB
write indexing, the index field of the smir register is written to write the mapping to the corresponding index
in the jTLB.

P – Probe Failure

0: indicates that TLB is hit when the TLBP instruction is executed.

1: indicates that TLB is missed when the TLBP instruction is executed.

Tfatal – Probe multiple

www.t-head.cn 66

Chapter 6. Memory Model

Fig. 6.6: Smir Register Descriptions

Specifies whether multiple matches occur when the TLBP instruction is executed.

0: indicates that no multiple matches occur.

1: indicates that multiple matches occur.

Iutlb - Instruction Micro TLB

Indicates query instructions uTLB.

Dutlb - Data Micro TLB

Indicates query data uTLB.

Index – TLB Index

512-entry configuration: Index [8:7] is the way index, and index [6:0] is the set/entry index (4-way,
128 entries).

1024-entry configuration: Index [9:8] is the way index, and index [7:0] is the set/entry index
(4-way, 256 entries).

6.3.5.4 MMU EntryHi register (smeh)

The SMEH register is used to store virtual address information for TLB access. It is updated by hardware
during TLB reads and must be pre-written by software before writing TLB entries.

• SMEH provides information about the page to be queried during TLB queries;

• SMEH provides information about the page read during TLB reads;

• SMEH provides information about the page to be written during TLB writes.

Fig. 6.7: Smeh Register Descriptions

512G:

www.t-head.cn 67

Chapter 6. Memory Model

In SV48, the page size is 512G.

ZID:

When TEE is configured, it represents the ZoneID corresponding to the page. This field is
updated by hardware during TLB reads and must be pre-written by software before writing TLB
entries.

VPN: the virtual page number

This field is updated by hardware when the TLB is read or a page error exception occurs. Software
writes a value to this field before writing values to TLB entries.

Pagesize: the page size

The page size is indicated by using a one-hot, where 100 indicates a size of 4 KB, 010 indicates
a size of 2 MB, and 001 indicates a size of 1 GB.

This field is updated by hardware when the TLB is read. Software writes a value to this field
before writing values to TLB entries.

ASID:

This field stores the ID of the current address space identified by the operating system. It is used
to distinguish between processes.

This field is updated by hardware when the TLB is read. Software writes a value to this field
before writing values to TLB entries.

6.3.5.5 MMU EntryLo register(smel)

The smel register stores physical addresses in TLB access and page attributes.

SMEL has a similar format to the page table, and the definitions of related bits can be found in Fig. 6.3.
SMEL[57:55] is used to store the PMP R/W/X information of the page from low to high.

Fig. 6.8: SMEL Register Descriptions

6.4 MMU Parity Checking

The MMU supports configurable parity checking, which can be applied to both TAG and DATA of jTLB.
When the parity checking mechanism is enabled, jTLB encodes data with parity during write operations

www.t-head.cn 68

Chapter 6. Memory Model

and checks parity during read operations. When a 1-bit error is detected, the MMU reports the error
information and invalidates the cache line containing the error in the jTLB. At the same time, this request
is treated as a jTLB miss, and a hardware page table walk is initiated, followed by a fill. Software can
query the MCER/SCER registers to obtain relevant error information, such as whether a jTLB parity
error has occurred and the location of the error. Control register details can be found in the description
of MCER/SCER. Errors of more than 1-bit cannot be detected or corrected. The C908 MMU supports
software injection of errors, and the control register details can be found in the description of MEICR.

6.5 PMP

6.5.1 Overview

The PMP unit of C908 complies with the RISC-V standard. The PMP unit checks the access permission on
a physical address to determine whether the CPU has the read/write/execution permissions on the address
in current mode.

The PMP unit of C908 provides the following features:

• Supports 8/16/32/64 PMP entries, which are identified and indexed by 0 to 63.

• Supports the minimum address split granularity of 4 KB.

• Supports the OFF, top of range (TOR), and naturally aligned power-of-2 region (NAPOT) address
matching modes, but not the naturally aligned four-byte region (NA4) mode.

• Supports three permissions: readable, writable, and executable.

• Supports software locks for PMP entries.

• Supports additionally configured with EPMP.

6.5.2 PMP control registers

A PMP entry consists of an 8-bit configuration register and a 64-bit address register. All PMP control
registers are accessible in M-mode. Access to PMP control registers in other modes will trigger illegal
instruction exceptions.

6.5.2.1 Physical memory protection configuration register (pmpcfg)

The pmpcfg register supports permission configuration for 8 entries.

For more information about the pmpcfg register, see Table 6.5.

www.t-head.cn 69

Chapter 6. Memory Model

Fig. 6.9: Layout of the pmpcfg register

Fig. 6.10: pmpcfg register

Table 6.5: Descriptions of the pmpcfg register

Bit Name Description
0 R The readable attribute of the entry.

0: indicates that the address matching the entry is non-readable.
1: indicates that the address matching the entry is readable.

1 W The writable attribute of the entry.
0: indicates that the address matching the entry is non-writable.
1: indicates that the address matching the entry is writable.

2 X The executable attribute of the entry.
0: indicates that the address matching the entry is non-executable.
1: indicates that the address matching the entry is executable.

4:3 A The address matching mode of the entry.
00: indicates the OFF mode, in which the entry is invalid.
01: indicates the TOR mode, in which the address of the adjacent entry is used as the
matching range.
10: indicates the NA4 mode, in which the matching range is 4 bytes. This mode is not
supported.
11: indicates the NAPOT mode, in which the matching range is a power of 2 and is at
least 4 KB.

7 L The lock enable bit of the entry.
0: indicates that access in M-mode will succeed, and
access results in S-mode/U-mode depend on the R/W/X settings.
1: indicates that the entry is locked and cannot be modified.
In TOR mode, the address register of the previous entry cannot be modified either.
Access results in all modes depend on the R/W/X settings.

In TORmode, assuming that the access address is A, the condition for hitting entry i is as follows: pmpaddr(i-

www.t-head.cn 70

Chapter 6. Memory Model

1) � A < pmpaddr(i). The lower boundary of entry 0 is 0.

In NAPOT mode, addresses and corresponding protection region sizes are shown in Table 6.6.

The PMP unit of C908 supports the minimum granularity of 4 KB in NAPOT mode, and does not support
the NA4 mode.

Table 6.6: Protection region code

pmpaddr[37:9] pmpcfg.A 保护区大小 备注

a_aaaa_aaaa_aaaa_aaaa_aaaa_aaaa_aaa0 NAPOT 4KB Supported
a_aaaa_aaaa_aaaa_aaaa_aaaa_aaaa_aa01 NAPOT 8KB Supported
a_aaaa_aaaa_aaaa_aaaa_aaaa_aaaa_a011 NAPOT 16KB Supported
a_aaaa_aaaa_aaaa_aaaa_aaaa_aaaa_0111 NAPOT 32KB Supported
a_aaaa_aaaa_aaaa_aaaa_aaaa_aaa0_1111 NAPOT 64KB Supported
a_aaaa_aaaa_aaaa_aaaa_aaaa_aa01_1111 NAPOT 128KB Supported
a_aaaa_aaaa_aaaa_aaaa_aaaa_a011_1111 NAPOT 256KB Supported
a_aaaa_aaaa_aaaa_aaaa_aaaa_0111_1111 NAPOT 512KB Supported
a_aaaa_aaaa_aaaa_aaaa_aaa0_1111_1111 NAPOT 1M Supported
a_aaaa_aaaa_aaaa_aaaa_aa01_1111_1111 NAPOT 2M Supported
a_aaaa_aaaa_aaaa_aaaa_a011_1111_1111 NAPOT 4M Supported
a_aaaa_aaaa_aaaa_aaaa_0111_1111_1111 NAPOT 8M Supported
a_aaaa_aaaa_aaaa_aaa0_1111_1111_1111 NAPOT 16M Supported
a_aaaa_aaaa_aaaa_aa01_1111_1111_1111 NAPOT 32M Supported
a_aaaa_aaaa_aaaa_a011_1111_1111_1111 NAPOT 64M Supported
a_aaaa_aaaa_aaaa_0111_1111_1111_1111 NAPOT 128M Supported
a_aaaa_aaaa_aaa0_1111_1111_1111_1111 NAPOT 256M Supported
a_aaaa_aaaa_aa01_1111_1111_1111_1111 NAPOT 512M Supported
a_aaaa_aaaa_a011_1111_1111_1111_1111 NAPOT 1G Supported
a_aaaa_aaaa_0111_1111_1111_1111_1111 NAPOT 2G Supported
a_aaaa_aaa0_1111_1111_1111_1111_1111 NAPOT 4G Supported
a_aaaa_aa01_1111_1111_1111_1111_1111 NAPOT 8G Supported
a_aaaa_a011_1111_1111_1111_1111_1111 NAPOT 16G Supported
a_aaaa_0111_1111_1111_1111_1111_1111 NAPOT 32G Supported
a_aaa0_1111_1111_1111_1111_1111_1111 NAPOT 64G Supported
a_aa01_1111_1111_1111_1111_1111_1111 NAPOT 128G Supported
a_a011_1111_1111_1111_1111_1111_1111 NAPOT 256G Supported
a_0111_1111_1111_1111_1111_1111_1111 NAPOT 512G Supported
0_1111_1111_1111_1111_1111_1111_1111 NAPOT 1T Supported
1_1111_1111_1111_1111_1111_1111_1111 Reserved - -

www.t-head.cn 71

Chapter 6. Memory Model

6.5.2.2 Physical memory protection address register (pmpaddr)

The PMP unit provides 8/16/32/64 pmpaddr (pmpaddr0 ~ pmpaddr7/15/31/63) for storing physical ad-
dresses of entries.

As defined in the RISC-V standard, pmpaddr registers store bit [39:2] of physical addresses. The PMP unit
of C908 supports the minimum granularity of 4 KB. Therefore, bit [8:0] is not used for address authentication
logic.

Fig. 6.11: pmpaddr registers

6.6 Memory access order

The following summarizes the processes of accessing an address space by C908 in different scenarios.

Scenario 1: without VA-PA translation

• CPU access PA:

• Obtain the address attribute from the sysmap.h file.

• Perform PMP checks to determine whether the XWR permissions conform to the PMP settings.

• Access the address.

Scenario 2: with VA-PA translation

• CPU access VA:

• Translate the address by using the MMU to obtain the corresponding PTE.

• Obtain the following information from the PTE: the PA, address attribute (Note 1), and XWR per-
missions.

• Perform PMP checks to determine whether the XWR permissions conform to the PMP settings. (The
minimum XWR permissions defined in the PMP register and PTE prevail.)

• Access the address.

Note: When the MAEE field is 1, the address attribute comes from the PTE.

www.t-head.cn 72

Chapter 6. Memory Model

When the MAEE field is 0, the address attribute comes from the sysmap.h file.

www.t-head.cn 73

CHAPTER 7

Memory Subsystem

7.1 Memory Subsystem Overview

Each core of C908 has its own I-Cache and D-Cache. Eight cores share one L2 cache. Data coherence among
multiple cores is maintained by hardware.

7.2 L1 I-Cache

7.2.1 Overview

The L1 I-Cache provides the following features:

• I Cache size is configurable through hardware: 16KB/32KB/64KB

• With a cache line size of 64 bytes, 4-way set-associative;

• Virtually indexed, physically tagged (VIPT);

• Data width for read access: 64 bits; Data width for write access: 128 bits

• First-in, first-out (FIFO);

• Adopts a pseudo-random replacement policy.

• Supports invalidation of the entire I-Cache and individual cache line.

• Supports instruction prefetching.

74

Chapter 7. Memory Subsystem

• Supports way prediction.

• Supports parity checking mechanism.

• A request for an instruction cache miss will snoop the data cache (controlled by a switch bit).

7.2.2 Instruction prefetching

The L1 I-Cache supports instruction prefetching through configuration of the implicit operation register
MHINT.IPLD.

• When there is a cache miss in the current cache line access, the prefetching of the next continuous
cache line is enabled, and the prefetching result is cached in a prefetch buffer.

• When the instruction access hits the prefetch buffer, the instruction is directly obtained from the buffer
and filled back into the instruction cache, thereby reducing the fetch delay.

Instruction prefetching requires that the prefetched cache line and the currently accessed cache line are in
the same page, otherwise the instruction prefetching function will be disabled to ensure the security of the
fetch address. In addition, the read-sensitive peripheral address space is also prohibited from being allocated
to the instruction area.

7.2.3 Way prediction

The C908 I-Cache adopts the 4-way set-associative structure. To reduce power consumption in parallel access
to two caches, C908 implements I-Cache way prediction. When way prediction information is valid, access
to invalid data ways is disabled, and the CPU accesses data only in the predicted way. You can configure
the IWPE field in the mhint register to enable I-Cache way prediction.

Way prediction can be classified into the following two types by instruction fetch behavior:

• Sequential access: When the CPU consecutively fetches instructions in a line, the CPU predicts way
information of the current access based on the way hit information of the last access.

• Jump access: A branch instruction obtains way prediction information of the target cache line along
with the jump target address, and accesses one of the caches based on the information.

7.2.4 Loop acceleration buffer

C908 provides a 32-byte loop acceleration buffer to cope with a large number of short loops in programs.
When detecting a short-loop instruction sequence, the CPU loads it to the loop acceleration buffer. When
a subsequent instruction fetch request hits the buffer, the CPU directly obtains the instruction and jump
target address from the buffer and disables access to the I-Cache, branch history table, and branch and jump
target predictor, reducing dynamic power consumption of instruction fetch. You can configure the LPE field
in the mhint register to enable short-loop acceleration.

www.t-head.cn 75

Chapter 7. Memory Subsystem

7.2.5 Branch history table

C908 uses the branch history table to predict jump directions of conditional branch instructions. The
branch history table is 64 KB in size. The bi-mode branch predictor predicts one branch result per cycle.
The branch history table consists of predictors and selectors. The predictors are classified into jump and non-
jump predictors and are maintained in real time based on branch history information. The branch history
table indexes ways based on branch history information and the address of the current branch instruction
to predict the jump direction of the branch instruction.

The branch history table predicts jump directions of the following conditional branch instructions:

BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ

7.2.6 Branch and jump target predictor

The C908 uses the branch and jump target predictor to predict jump target addresses of branch instructions.
The branch and jump target predictor records the historical target addresses of branch instructions. If the
current branch instruction hits the branch and jump target predictor, the recorded target address is used as
the predicted target address of the current branch instruction.

The branch and jump target predictor provides the following features:

• Supports 1024/2048 entries.

• Adopts the 2-way set-associative structure and supports selection and replacement based on the PC in
the lower bits of a branch instruction.

• Maintains I-Cache way prediction information.

• Supports indexing by using a part of the PC of the current branch instruction.

The branch and jump target predictor predicts jump target addresses of the following branch instructions:

• BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ

• JAL and C.J

7.2.7 Indirect branch predictor

C908 uses the indirect branch predictor to predict target addresses of indirect branch instructions. Indirect
branch instructions obtain target addresses from registers. One indirect branch instruction can contain
multiple branch target addresses, which cannot be predicted by using the conventional branch and jump
target predictor. Therefore, C908 uses the branch history-based indirect branch predictor to associate
historical target addresses of an indirect branch instruction with its branch history information, and discretize
different target addresses of one indirect branch instruction based on different branch history information.
This makes it possible to predict multiple target addresses.

Indirect branch instructions include:

www.t-head.cn 76

Chapter 7. Memory Subsystem

• JALR: except when the source register is x1 or x5

• C.JALR: except when the source register is x5

• C.JR: except when the source register is x1 or x5

7.2.8 Return address predictor

The return address predictor is used to quickly and accurately predict a return address when a function call
ends. When the instruction fetch unit (IFU) obtains a valid function call instruction through decoding, it
pushes a function return address to the return address predictor. When the IFU obtains a valid function
return instruction through decoding, it pulls a function return address from the return address predictor.
The return address predictor supports up to 12 nested function calls. If more than 12 function calls are
nested, a target address prediction error will occur.

• Function call instructions include JAL, JALR, and C.JALR.

• Function return instructions include JALR, C.JR, and C.JALR.

For more information, see Table 7.1.

Table 7.1: Instruction features

rd rs1 rs1=rd RAS action
!link !link - none
!link link - pop
link !link - push
link link 0 push and pop
link link 1 push

7.2.9 Fast jump target predictor

To improve efficiency of the IFU in consecutive jumps, C908 provides a fast jump target predictor at level
1 of the IFU. When the IFU jumps consecutively, the fast jump target predictor records the address of the
second jump instruction and the jump target address. If an instruction fetch request hits the fast jump
target predictor, the IFU starts to jump at level 1, reducing performance loss of at least one cycle.

The fast jump target predictor predicts jump target addresses of the following branch instructions:

• BEQ, BNE, BLT, BLTU, BGE, BGEU, C.BEQZ, and C.BNEZ

• JAL and C.J

• Function return instructions

www.t-head.cn 77

Chapter 7. Memory Subsystem

7.2.10 Parity Check Function

The instruction cache supports a configurable parity check mechanism. The parity check mechanism checks
the tag array of the instruction cache with a granularity of 29 bits and checks the data array with a granularity
of 34 bits. After the parity check mechanism is enabled, the instruction cache performs odd-even encoding on
the data when writing and checks the data when reading. When a 1-bit data error occurs, it can be detected,
the current error data is invalidated, a new instruction fetch request is sent to the bus, and the cache is filled
back. At the same time, error information is reported, including way information, index information, etc.,
which can be queried in the MCER/SCER register. The specific control register description can refer to the
description of MCER/SCER in Appendix C-1 of the Machine Mode Processor Control and Status Extension
Register.

Errors of more than 1 bit cannot be detected or corrected.

The C908 instruction cache supports software injection of errors, and the specific control register description
can refer to the description of MEICR in Appendix C-1 of the Machine Mode Processor Control and Status
Extension Register.

7.3 L1 D-Cache

7.3.1 Overview

The L1 D-Cache provides the following features:

• D-Cache size is configurable through hardware: 16KB/32KB/64KB

• With a cache line size of 64 bytes, 4-way set-associative;

• Virtually indexed, physically tagged (VIPT);

• Maximum data width per read access: 128 bits, supporting byte, halfword, word, doubleword, and
quadword access;

• Maximum data width per write access: 256 bits, supporting access to any combinations of bytes;

• Write policies: write-back with write-allocate, and write-back with write-no-allocate;

• First-in, first-out (FIFO);

• Invalidation and clearing by D-Cache or cache line supported;

• Multi-channel data prefetch for instructions.

• Supports ECC and parity checking mechanism.

www.t-head.cn 78

Chapter 7. Memory Subsystem

7.3.2 Cache coherence

For requests with shareable and cacheable page attributes, data coherence between L1 D-Caches of different
cores is maintained by hardware.

For requests with non-shareable and cacheable page attributes, the CPU does not maintain data coherence
between L1 D-Caches. If non-shareable and cacheable pages need to be shared across cores, data coherence
must be maintained by software.

C908MP maintains data coherence between L1 D-Caches of different cores based on the MESI protocol.
MESI indicates four states of each cache line in the D-Cache:

• M: indicates that the cache line is available only in this D-Cache and has been modified (UniqueDirty).

• E: indicates that the cache line is available only in this D-Cache and has not been modified (Unique-
Clean).

• S: indicates that the cache line may be available in multiple D-Caches and has not been modified
(ShareClean).

• I: indicates that the cache line is not available in this D-Cache (Invalid).

7.3.3 Exclusive access

C908 supports exclusive memory access instructions: LR and SC. You can use the two instructions to
constitute a synchronization primitive such as an atomic lock to synchronize data between different processes
of a core or between different cores. The LR instruction tags the address to be exclusively accessed. The SC
instruction determines whether the tagged address is preempted by other processes. C908 provides a local
monitor in the L1 D-Cache and a global monitor in the L2 cache for each core. Each monitor consists of a
state machine and an address buffer. The state machine has two states: IDLE and EXCLUSIVE.

Exclusive access to a cacheable page can be implemented with the local monitor. When the LR instruction
is executed, it sets the state machine of the local monitor to the EXCLUSIVE state and stores the address
to be accessed and the size to the buffer. When the SC instruction is executed, it reads the state of the
local monitor, the address, and the size. If the state is EXCLUSIVE and the address exactly matches the
size, the write operation is executed, a write success is returned, and the state machine is reset to the IDLE
state. If the state or the address/size matching does not meet the requirement or the D-Cache is disabled,
the write operation is not executed, a write failure is returned, and the state machine is reset to the IDLE
state. When the write operation of another core performs matching against the local monitor at the same
cache line address, the state machine is also reset to the IDLE state. The write operation in the current core
or exclusive access to a different address does not affect the local monitor. In addition, the local monitor
must be cleared when a process is switched.

Exclusive access to a non-cacheable page is implemented with both the local monitor and the global monitor.
When the LR instruction is executed, it must set both the local monitor and the global monitor. After the
local monitor passes the check, the SC instruction further checks the global monitor. If the global monitor

www.t-head.cn 79

Chapter 7. Memory Subsystem

passes the check, the write operation is executed, a write success is returned, and the state of the state
machine is cleared; otherwise, the write operation is not executed, a write failure is returned, and the state
of the state machine is cleared. When the write operation of another core performs matching against a global
monitor at an address, the state machine of the global monitor is reset to the IDLE state.

In C908-based systems, we recommend that you use the LR and SC instructions to implement atomic locks.
If the address attribute of an atomic lock is cacheable (either shareable or non-shareable), no special design
is required for the SoC system. This is a typical case. If the address attribute of an atomic lock is non-
cacheable, device, or strongly ordered, the system (for example, the slave client) must be integrated with an
exclusive monitor. If an operation is performed in other ways, the response will be UNPREDICTABLE.

7.4 L2 Cache

7.4.1 Overview

The L2 cache provides the following features:

• Cache size: 1 MB, with a cache line size of 64 bytes, 16-way set-associative;

• Strictly inclusive of the L1 D-Cache, and non-strictly inclusive of the L1 I-Cache;

• Physically indexed, physically tagged (PIPT);

• Maximum data width per access: 64 bytes;

• Write policies: write-back with write-allocate, and write-back with write-no-allocate;

• First-in, first-out (FIFO);

• Programmable RAM latency;

• Instruction prefetch and TLB prefetch supported;

• Block-based pipelining.

7.4.2 Cache coherence

The L2 cache of C908MP maintains data coherence between D-Caches of different cores based on the MOESI
protocol. MOESI indicates five states of each cache line in the D-Cache:

• M: indicates that the cache line is available only in this D-Cache and has been modified (UniqueDirty).

• O: indicates that the cache line may be available in multiple D-Caches and has been modified
(ShareDirty).

• E: indicates that the cache line is available only in this D-Cache and has not been modified (Unique-
Clean).

www.t-head.cn 80

Chapter 7. Memory Subsystem

• S: indicates that the cache line may be available in multiple D-Caches and has not been modified
(ShareClean).

• I: indicates that the cache line is not available in this D-Cache (Invalid)

7.4.3 Structure

The L2 cache of C908MP is built on a block-based pipelining architecture. Access addresses are discretized
in two different blocks to allow parallel access and improve access efficiency.

The block mechanism is shown in Fig. 7.1 .

• The tag RAM is divided into two tag sub-blocks by PA[6]: tag bank 0 and tag bank 1, to handle two
access requests in parallel within one clock cycle.

• Similarly, the data RAM is divided into two data sub-blocks by PA[6]: data bank 0 and data bank
1. Each data sub-block is further divided into four 128-bit micro blocks, to obtain one cache line in
parallel.

Fig. 7.1: L2 Cache structure

7.4.4 RAM latency

The L2 cache has a long access latency because it is large in size. It usually takes multiple clock cycles to
complete access to the L2 cache. C908MP enables you to configure the access latency. You can set the setup
time and latency of RAM in different processes. Detailed configurations are shown in Table 7.2 .

www.t-head.cn 81

Chapter 7. Memory Subsystem

Table 7.2: RAM latency configurations

Item Feature Description
L2 TAG setup L2 Cache Tag RAM

setup:
1b0: 0 cycles. Default
value
1b1: 1 cycle.

L2 Cache Tag The RAM setup affects only tags.
The RAM access.

L2 TAG latency L2 Cache Tag RAM la-
tency:
3b000: 1 cycle. Default
value
3b001: 2 cycles.
3b010: 3 cycles.
3b011: 4 cycles.
3b1xx: 5 cycles.

L2 DATA setup L2 Cache Data RAM
setup:
1b0: 0 cycles. Default
value
1b1: 1 cycle.

L2 Cache Data The RAM setup affects only data.
The RAM access.

L2 DATA latency L2 Data RAM latency:
3b000: 1 cycle. Default
value
3b001: 2 cycles.
3b010: 3 cycles.
3b011: 4 cycles.
3b100: 5 cycles.
3b101: 6 cycles.
3b110: 7 cycles.
3b111: 8 cycles.

You can set the latency based on the time required for accessing the RAM. The default value of setup is 0.
When the RAM setup time or winding length is long, you can modify setup to 1.

The number of access cycles with the preceding configurations is shown in Table 7.3.

www.t-head.cn 82

Chapter 7. Memory Subsystem

Table 7.3: Valid access latency of the tag RAM

Tag latency Valid access latency of the tag RAM
/ TAG setup = 0 TAG setup = 1
000 1 2
001 2 3
010 3 4
011 4 5
1xx 5 5

Table 7.4: Valid access latency of the data RAM

Tag latency Valid access latency of the data RAM
/ TAG setup = 0 TAG setup = 1
000 1 2
001 2 3
010 3 4
011 4 5
100 5 6
101 6 7
110 7 8
111 8 8

• The maximum valid L2 tag latency is 5 cycles.

• When tag setup is 1, one more cycle is required for access. Before the SRAM is accessed, the SRAM
input signal will be flopped.

• The maximum valid L2 data latency is 8 cycles.

• When data setup is 1, one more cycle is required for access. Before the SRAM is accessed, the SRAM
input signal will be flopped.

7.5 Accelerated memory access

This section describes the accelerated memory access features of C908 L1 and L2 caches.

7.5.1 Instruction prefetch of the L1 I-Cache

The L1 I-Cache supports instruction prefetch. You can configure the IPLD field in the mhint register to
enable this feature. When an instruction access request misses the current cache line, the next consecutive
cache line is prefetched and stored to the prefetch buffer. When the instruction access request hits the

www.t-head.cn 83

Chapter 7. Memory Subsystem

prefetch buffer, the instruction is directly obtained from the prefetch buffer and written back to the I-Cache,
reducing the instruction fetch latency.

This feature requires that the prefetched cache line and the current accessed cache line be on the same page,
to ensure security of the instruction fetch address. In addition, you cannot allocate read-sensitive device
address spaces to instruction spaces.

7.5.2 Multi-channel data prefetch of the L1 D-Cache

C908 supports data prefetch to reduce the access latency of large-sized memory such as DDR SDRAMs.
C908 detects D-Cache misses to determine a fixed access mode through matching. Then the hardware
automatically prefetches cache lines and writes them back to the L1 D-Cache.

C908 supports data prefetch through up to 8 channels and supports two prefetch methods: consecutive
prefetch and strided prefetch (stride <= 32 cache lines).

C908 also implements forward prefetch and backward prefetch (the stride is negative) to support various
possible access modes.

Data prefetch is disabled when the CPU invalidates or clears the D-Cache.

You can configure the DPLD field in the mhint register to enable data prefetch and the DPLD_DIS field to
determine the number of cache lines to be prefetched at a time.

The following instructions support data prefetch:

• LB, LBU, LH, LHU, LW, LWU, and LD

• FLW and FLD

• LRB, LRH, LRW, LRD, LRBU, LRHU, LRWU, LURB, LURH, LURW, LURD, LURBU, LURHU,
LURWU, LBI, LHI, LWI, LDI, LBUI, LHUI, LWUI, LDD, LWD, and LWUD

7.5.3 L1 adaptive write allocation mechanism

C908 implements adaptive write allocation at L1. When the CPU detects consecutive memory write opera-
tions, the write allocation attribute of pages is automatically disabled.

You can configure the AMR field in the mhint register to enable L1 adaptive write allocation.

When the CPU invalidates or clears the D-Cache, adaptive write allocation is automatically disabled. After
the invalidation or clearing is completed, the CPU detects consecutive memory write operations again.

The following instructions support adaptive write allocation:

• SB, SH, SW, and SD

• FSW and FSD

• SRB, SRH, SRW, SRD, SURB, SURH, SURW, SURD, SBI, SHI, SWI, SDI, SDD, and SWD

www.t-head.cn 84

Chapter 7. Memory Subsystem

7.5.4 L2 prefetch mechanism

The L2 cache supports instruction prefetch and TLB prefetch. It supports the following prefetch features:

• The number of instructions prefetched at a time is software-configurable and can be 0, 1, 2, or 3. All
prefetched instructions are written back to the L2 cache.

• Only one entry is prefetched from the TLB at a time.

• The prefetch range is a 4 KB page table, and addresses beyond the range will not be prefetched.

• You can use the machine-mode (M-mode) L2-cache control register (mccr2) to configure the prefetch
mechanism.

7.6 L1/L2 cache operation instructions and registers

After the CPU is reset, the I-Cache and D-Cache are automatically invalidated and disabled by default.

Similarly, after the CPU is reset, the L2 cache is automatically invalidated. After the invalidation is com-
pleted, the L2 cache is automatically enabled and cannot be disabled. When the L1 cache is disabled, no
data is written back to the L2 cache if the L2 cache is missed.

7.6.1 Extended registers of the L1 cache

Extended registers of the C908 L1 cache are classified into the following types by feature:

• Cache enable and mode configuration: The M-mode hardware configuration register (mhcr) allows you
to enable/disable the I-Cache/D-Cache and configure the write allocation and writeback modes. The
supervisor-mode (S-mode) hardware configuration register (shcr) is a read-only register mapped to the
mhcr register.

• Dirty page table entry clearing and invalidation: The M-mode cache operation register (mcor) allows
you to clear and invalidate dirty page table entries in the I-Cache and the D-Cache.

• Cache read: The machine-mode cache access instruction register (mcins), M-mode cache access index
register (mcindex), and M-mode cache access data register 0/1 (mcdata0/1) allow you to read data
from the I-Cache and the D-Cache.

For more information, see M-mode CPU control and status extension registers and M-mode cache access
extension registers.

7.6.2 Extended registers of the L2 cache

Extended registers of the C908 L2 cache are classified into the following types by feature:

www.t-head.cn 85

Chapter 7. Memory Subsystem

• L2 cache enable and latency configuration: The mccr2 register allows you to set the access latency of
the L2 cache.

• L2 cache read: The mcins, mcindex, and mcdata0/1 registers allow you to read data from the L2 cache.

For more information, see M-mode CPU control and status extension registers and M-mode cache access
extension registers.

7.6.3 L1/L2 cache operation instructions

C908 provides extended L1/L2 cache operation instructions that invalidate page table entries by address,
invalidate all page table entries, clear dirty page table entries by address, clear all dirty page table entries,
clear and invalidate dirty page table entries by address, and clear and invalidate all dirty page table entries.
For more information, see Table 7.5 .

www.t-head.cn 86

Chapter 7. Memory Subsystem

Table 7.5: L1/L2 cache operation instructions

Instructions Description
ICACHE.IALL Invalidates all page table entries in the I-Cache.
ICACHE.IALLS Invalidates all page table entries in the I-Cache through broadcasting.
ICACHE.IPA Invalidates page table entries that match the specified physical addresses in

the I-Cache.
ICACHE.IVA Invalidates page table entries that match the specified virtual addresses in

the I-Cache.
DCACHE.CALL Clears all dirty page table entries in the D-Cache.
DCACHE.CIALL Clears and invalidates all dirty page table entries in the D-Cache.
DCACHE.CIPA Clears dirty page table entries that match the specified physical addresses in

the D-Cache and invalidates the entries.
DCACHE.CISW Clears dirty page table entries in the D-Cache based on the specified way and

set and invalidates the entries.
DCACHE.CIVA Clears dirty page table entries that match the specified virtual addresses in

the D-Cache and invalidates the entries.
DCACHE.CPA Clears dirty page table entries that match the specified physical addresses in

the D-Cache.
DCACHE.CPAL1 Clears dirty page table entries that match the specified physical addresses in

the L1 D-Cache.
DCACHE.CVA Clears dirty page table entries that match the specified virtual addresses in

the D-Cache.
DCACHE.CSW Clears dirty page table entries in the D-Cache based on the specified way and

set.
DCACHE.CVAL1 Clears dirty page table entries that match the specified virtual addresses in

the L1 D-Cache.
DCACHE.IPA Invalidates page table entries that match the specified physical addresses in

the D-Cache.
DCACHE.ISW Invalidates page table entries in the D-Cache based on the specified way and

set.
DCACHE.IVA Invalidates page table entries that match the specified virtual addresses in

the D-Cache.
DCACHE.IALL Invalidates all page table entries in the D-Cache.
L2CACHE.CALL Clears all dirty page table entries in the L2 cache.
L2CACHE.CIALL Clears all dirty page table entries in the L2 cache and invalidates the entries.
L2CACHE.IALL Invalidates all dirty page table entries in the L2 cache.

For more information, see Appendix B-1 Cache instructions.

www.t-head.cn 87

CHAPTER 8

Vector Computations

C908 is compatible with RISC-V Vector Extension, Version 1.0-rc1-20210608 .

8.1 Vector programming model

C908 supports the following vector extension features:

• 32 independent vector registers from v0 to v31. Vector registers are 128 or 256 bits (VLEN=128/256),
which depends on the vector computing capability option.

• Vector floating-point instructions support the FP16 and FP32 elements (SEW=16/32).

• Vector integer instructions support the INT8, INT16, INT32, and INT64 elements (SEW=8/16/32/64).

• Vector register groups are supported to improve the efficiency of vector computations. Four types
of vector register groups are supported: 32, 16, 8, or 4 vector groups can be created, each of which
contains 1, 2, 4, or 8 vector registers, respectively.

8.2 Vector control registers

Seven non-privileged control and status registers (CSRs) are added for C908:

• vstart

The vstart register specifies the position of the first element when a vector instruction is executed. After
a vector instruction is executed, vstart is reset to zero. In most cases, software does not need to modify

88

Chapter 8. Vector Computations

vstart. In C908, only vector load/store instructions support non-zero vstart registers. All computational
vector instructions support only vstart=0. Otherwise, instruction exceptions occur.

• vxsat

The vxsat register is valid only when the bit is set to 0. This register indicates whether the result of a
fixed-point instruction is overflow.

• vxrm

The vxrm register provides four rounding modes: Round up, round to even, round towards zero, and round
to odd.

• vcsr

Vector control core status register.

• vl

The vl register specifies the range of elements in the target register to be updated by a vector instruction.
A vector instruction updates elements whose numbers are smaller than vl in the target register and resets
elements whose numbers are greater than vl to zero. When vstart>=vl or vl=0, no element in the target
register is updated.

• vtype

The vtype register defines basic data properties for vector computations, including: Invalid flag bits, element
bits, and vector register groups. The vtype register also includes the EDIV bit. C908 does not support EDIV.
Therefore, the EDIV bit is set to 0.

• vlenb (Vector Spec 0.8)

The victor bits of C908 are measured in bytes.

Therefore, C908 supports vector status maintenance (Vector Spec 0.8). The VS bit is defined in mstatus[10:9]
to decide whether to save the vector-related register during context switching.

8.3 Vector exceptions

Vector instructions are classified into the following categories:

• Vector load

• Vector computation

• Vector store

Vector computation does not trigger exceptions. Vector store does not trigger exceptions because the bus
ignores BRESP faults. Therefore, only vector load triggers exceptions. When an exception is triggered
by vector load, the CPU discards the data that it reads and resets vstart to 0. The mepc points to the
instruction. When an inexact exception occurs, mepc may point to subsequent instructions.

www.t-head.cn 89

Chapter 8. Vector Computations

The CPU handles vector instruction interrupts in the same way as regular instructions. The CPU completes
the current instruction and the mepc points to the next instruction. The remaining steps are the same as
those in handling regular interrupts.

www.t-head.cn 90

CHAPTER 9

Security Design

9.1 Security Requirements

This chapter describes software and hardware security design to meet trusted execution environment (TEE)
requirements. System security requirements include:

• Support independent zones.

• Support zone isolation by code execution, memory access, external device, or I/O.

• Support isolation between applications and isolation between applications and the kernel within a zone.

• Support the multi-core SMP architecture.

• Support shared memory access among zones.

• Support the RISC-V 32-bit and 64-bit architectures.

• Supported trustworthy communication among zones.

• Support TEEs that comply with the GP specification.

9.2 Processor Security Model

The RISC-V ISA architecture supports the following privileged modes: M-mode, S-mode, and U-mode.
These modes provide different execution and access permissions:

91

Chapter 9. Security Design

• In U-mode, only non-privileged instructions can be executed. In most cases, user applications are run
in this mode.

• In S-mode, root user instructions can be executed and MMU management permissions are granted. In
most cases, complex operating systems such as Linux are run in this mode.

• The M-mode provides the most execution and access privilege, including interrupt/exception handling
and management, PMP management, and privileged access control management.

Fig. 9.1: RISC-V privileged modes

The S-mode and U-mode of RISC-V have no difference than other mainstream processor architectures, such
as the supervisor and user modes of ARM. In U-mode, only non-privileged instructions can be executed.
Applications running in U-mode must transition to S-mode through self-trap and access system resources
under the management of the operating system. S-mode supports non-privileged instructions and privileged
instructions, and provides permissions to access CSRs in S-mode. In addition, S-mode provides permissions
to access MMUs. Memory protection and isolation in user mode and kernel mode are implemented through
virtual memory management. The M-mode provides the most execution and access privilege. The RISC-V
architecture adds privileged instructions that can be executed only in M-mode and system registers can be
accessed only in M-mode, such as PMP. The most important feature of the M-mode is exception interception
and handling. During exception handling, the processor transitions all exceptions to the M-mode through
self-trap by default. The M-mode exception handler then forwards interrupts to the S-mode. The M-mode
is usually used to run trusted firmware to adjust, allocate, and manage software and hardware resources.

To meet the isolation requirements for TEEs, security extensions are added to the Xuantie C series processors
based on the RISC-V architecture. These processors can create multiple virtual zones based on software
coordination. Fig. 9.2 shows the architecture. An operating system runs independently in each zone and
applications run in the operating system. The operating system runs in S-mode and applications run in

www.t-head.cn 92

Chapter 9. Security Design

U-mode. The processor can run in different zones. When the processor runs in a zone, it occupies the entire
physical core in real time. The zone ID of the processor is changed to the ID of the current zone. Zone
switching is completed by the trusted firmware in M-mode.

Fig. 9.2: Zones and privileged modes in Xuantie C series processors

9.3 System Security Architecture

9.3.1 Secure memory management

Each hardware thread can run in different zones through time-sharing. When a hardware thread runs in a
zone, memory access is isolated in the zone. Other zones are not allowed to access the memory resources
in the zone without authorization. In addition, the zone is not allowed to access memory resources in other
zones without authorization. Different zones can exchange data through shared memory.

Physical Memory Protection (PMP)

The RISC-V architecture provides the PMP mechanism to isolate memory access in M-mode from memory
access in S-mode and U-mode. PMP is configurable only in M-mode. PMP consists of multiple groups (8
to 16 groups in most cases) of address registers and configuration registers. The configuration registers can
grant or revoke read, write, and execute permissions in S-mode and U-mode. PMP can also protect memory
mapping I/O (MMIO). The M-mode trusted firmware can use PMP to limit the processor from accessing
external device I/O.

When a hardware thread switches from one zone to another zone, the PMP configuration is also switched.
The M-mode trusted firmware needs to save the PMP configuration in the current zone and loads the PMP
configuration in the target zone to update the access permissions on memory and MMIO.

When multiple zones share memory, you can grant permissions to access the shared memory block to these
zones by writing the access permissions to the PMP configuration table of each zone. The trusted firmware

www.t-head.cn 93

Chapter 9. Security Design

will update the PMP table during zone switching. Fig. 9.3 shows the PMP configurations of multiple zones.
The SHM area is a memory block shared by the zones.

Fig. 9.3: PMP Configurations of Multiple Zones

I/O Physical Memory Protection (IOPMP)

The RISC-V architecture provides a PMP mechanism to protect memory and MMIO access of RISC-V
processors in different privileged modes.

Other master devices connected to the bus also require memory access protection: IOPMP. Same as PMP,
IOPMP allows you to define access permissions. IOPMP checks whether the reads and writes sent through
the bus meet the permission rules. Only legitimate reads and writes are transmitted to the target device.
Typically, two methods are used to connect to an IOPMP:

1. Connect the requester to an IOPMP

Add an IOPMP between the bus and each master device, which is similar to PMP of RISC-V. Add IOPMPs
for different master devices. These IOPMP are independent of each other. The design is simple but more
flexible. However, the IOPMPs cannot be shared among master devices. As shown in Fig. 9.4 :

Fig. 9.4: Connect the requester to an IOPMP

2. Connect the destination device to an IOPMP

www.t-head.cn 94

Chapter 9. Security Design

The IOPMP of the destination device needs to distinguish requests from different master devices. To do
this, the requests sent by master devices must carry a master ID. As shown in Fig. 9.5:

Fig. 9.5: Connect the destination device to an IOPMP

In Fig. 9.6 , the Xuantie processor mounts requesters to IOPMPs to build a secure SoC system framework.

Fig. 9.6: SoC System Framework Based on PMP and IOPMP Isolation.

Memory Management Units (MMUs)

MMUs are used to manage virtual memory in traditional operating systems. MMUs can be used to separate
the user space and kernel space. The MMUs of a Xuantie processor integrates a configurable number of
TLBs. Each TLB stores translations of virtual addresses to physical addresses and access permissions.

Different zones have separate TLBs to ensure that addresses in different zones are translated separately.
Zone switching clears the corresponding TLB (sfence).

Cache

When a processor runs in different zones, each zone has separate PMP configurations. PMP limits the zones
from accessing physical memory MMIO and ensures that memory and I/O access among different zones are

www.t-head.cn 95

Chapter 9. Security Design

not interfered.

In a Xuantie C series RISC-V processor, memory access that hits the cache is also protected by PMP. This
means that all access to the cache must be verified by PMP. The access can reach the cache only after it
passes the check. Multi-core cache coherence is also protected by PMP.

Device Coherence Port (DCP)

Xuantie C908 provides a DCP. DCP is an AXI slave interface of a processor. External master devices can
access internal data with cache coherence through the DCP. This improves the efficiency of data exchange
between the processor and external master device. Xuantie C908 does not add protection to the DCP for
access from external master devices. To protect external master devices, you need to mount the external
master devices that are connected to the DCP to IOPMPs for protection.

9.3.2 Secure interrupts

In the PLIC specification of RISC-V, there are two modes of interrupt sources: M-mode interrupt sources
and S-mode interrupt sources. M-mode interrupt sources are handled only by the M-mode. S-mode interrupt
sources can be handled by the M-mode or S-mode. The M-mode has permissions to determine whether to
send interrupts to the S-mode for handling. The M-mode of the RISC-V architecture provides interrupt
interception to help isolate interrupts of different zones. Table 9.1 describes how interrupts of different
modes are handled.

Table 9.1: RISC-V interrupt handling model

Target mode of the in-
terrupt source

Processor current
mode

Delegation Whether the
interrupt is
handled

Mode that handles the
interrupt

M-mode M-mode Invalid Yes M-mode
S-mode Invalid Yes M-mode
U-mode Invalid Yes M-mode

S-mode
S-mode

M-mode 0 Yes M-mode
1 No

M-mode 0 Yes M-mode
1 Yes S-mode

U-mode 0 Yes M-mode
1 Yes S-mode

Interrupts are handled in the following ways based on the interrupt interception feature of the M-mode of
RISC-V:

1. M-mode interrupt distribution

2. Interrupt groups

M-mode interrupt distribution

www.t-head.cn 96

Chapter 9. Security Design

The M-mode supports external interrupt interception. All external interrupts need to transition to the
M-mode through self-trap. The M-mode trusted firmware will centrally manage all external interrupts,
identify interrupt sources, and forward interrupts to different zones to handle these interrupts. This method
meets the requirements for isolating interrupts among different zones. However, interrupts are forwarded
by the trusted firmware. The trusted firmware needs to switching the context of the zone during interrupt
forwarding, which delays interrupt handling.

Fig. 9.7: M-mode Interrupt Distribution in Xuantie C series processors

When this method is used, all external interrupts are sent to the M-mode trusted firmware. The trusted
firmware first saves the fields of the current zone and reads the number of the external interrupt. Then, the
trusted firmware selects a destination zone from the zone interrupt allocation table and obtains the entry of
the interrupt handler of the destination zone. The trusted firmware can obtain the address of the interrupt
entry by querying the stvec register. Before forwarding the interrupt to the entry, the trusted firmware
needs to switch to the PMP configuration of the destination zone, checks the legitimacy of the address of
the interrupt handler, and finally executes the mret instruction to switch to the destination zone. After the
interrupt is handled, the interrupt handler needs to transition to the M-mode through an ecall. The M-mode
trusted firmware will restore the fields of the interrupted zone and switch back to the zone.

Interrupt groups

Interrupt forwarding through the M-mode severely delays interrupt handling. In addition, after an interrupt
handler handles the interrupt, it needs to transition to the M-mode through an ecall. This results in
incompatibility with the existing interrupt handlers (especially for Linux).

The PLIC provides separate control over each interrupt source and target. This means that the hardware
thread to which the interrupts of an interrupt source are forwarded and the mode of the hardware thread
can be separately configured. Currently, the execution environments of processors are classified into Rich

www.t-head.cn 97

Chapter 9. Security Design

Execution Environments (REEs) and Trusted Execution Environments (TEEs). Secure interrupts are han-
dled in TEEs. Most hardware interrupts are regular interrupts. Only a few number of hardware interrupts,
such as secure timers, are secure interrupts. To reduce the interrupt handling delay posed by the M-mode,
this solution creates interrupt groups. Interrupts from interrupt sources in the current zone are handled in
the zone. Interrupts from interrupt sources that do not belong to the current zone are handled in M-mode.
Interrupt context scenarios:

• The REE generates regular interrupts.

• The REE generates secure interrupts.

• The TEE generates regular interrupts.

• The TEE generates secure interrupts.

The REE generates regular interrupts or the REE generates secure interrupts

When the processor runs in the REE (Zone #0), the trusted firmware needs to perform the following
operations:

1. Enables the S-mode for the interrupt source of regular interrupts.

2. Enables the M-mode for the interrupt source of secure interrupts.

3. Resets the first bit (SSIE_DELEG), fifth bit (STIE_DELEG), and ninth bit (SEIE_DELEG) of
the mideleg register. Assume that software interrupts and clock interrupts are configured as regular
interrupts.

4. Enables mstatus.MIE and mstatus.SIE, and enables mie.MEIE, mie.MSIE, mie.MTIE,mie.SEIE,
mie.SSIE, and mie.STIE.

The TEE generates regular interrupts or the TEE generates secure interrupts

When the processor runs in the TEE (Zone #1), the trusted firmware needs to perform the following
operations:

1. Enables the S-mode for the interrupt source of regular interrupts.

2. Enables the M-mode for the interrupt source of secure interrupts.

3. Resets the first bit (SSIE_DELEG), fifth bit (STIE_DELEG), and ninth bit (SEIE_DELEG) of
the mideleg register. Assume that software interrupts and clock interrupts are configured as regular
interrupts.

4. Enables mstatus.MIE and mstatus.SIE, and enables mie.MEIE, mie.MSIE, mie.MTIE,mie.SEIE,
mie.SSIE, and mie.STIE.

9.3.3 Secure Access Control

The M-mode is the most privileged mode that a hardware thread can run in RISC-V. A hardware thread
running in M-mode has full access permissions on memory, I/O, and underlying features that are required for

www.t-head.cn 98

Chapter 9. Security Design

Fig. 9.8: Interrupt Handling Rules When the Processor Is Running in Zone #0

Fig. 9.9: Interrupt Handling Rules When the Processor Is Running in Zone #1

www.t-head.cn 99

Chapter 9. Security Design

booting and configuring the operating system. The M-mode is a privileged mode that must be implemented
by all standard RISC-V processors. Simple RISC-V microcontrollers support only the M-mode.

The most important feature of the M-mode is exception interception and handling. By default, when
an exception occurs (regardless of the privileged mode), the control permissions are transferred to the
exception handler in M-mode. However, most exceptions in Linux are handled in S-mode. The exception
handler in M-mode can redirect exceptions to the S-mode but these operations will severely delay exception
handling. To address this issue, RISC-V provides the exception delegation mechanism. This mechanism
can selectively transfer interrupts and exceptions to the S-mode for handling and bypass the M-mode. The
Machine Interrupt Delegation (mideleg) CSR controls the interrupts or exceptions that are transferred to
the S-mode.

Take note that control permissions are not transferred to a mode with less privilege when an interrupt or
exception occurs, regardless of the delegation settings. Interrupts and exceptions in M-mode are handled
only in M-mode. Interrupts and exceptions in S-mode are handled in M-mode or S-mode depending on the
delegation settings. These interrupts and exceptions are never handled in U-mode.

The M-mode is sufficient for simple embedded systems. However, it is applicable only if the entire code
repository is trusted because the M-mode provides full access to the hardware platform. In most cases, not
all application code can be trusted because it is difficult to verify the security of every application. Therefore,
RISC-V provides this mechanism to protect systems against untrusted code and isolate untrusted processes.
The untrusted code must be limited to access only the authorized memory block. Processors that support
the M-mode and S-mode/U-mode support PMP, which allows the M-mode to specify the memory addresses
that the S-mode/U-mode can access. PMP can also limit MMIO access. With the help of PMP, the M-mode
can limit untrusted users or super users from accessing the memory and external devices.

9.3.4 Secure Debugging

Currently, C908 does not support individual zone debugging. Only global zone debugging can be enabled or
disabled.

www.t-head.cn 100

CHAPTER 10

Interrupt Controllers

10.1 Core local interrupt (CLINT) controller

C908 implements the CLINT controller. It is a memory address mapping module that handles software and
timer interrupts.

10.1.1 CLINT register address mapping

The CLINT controller occupies a 64 KB memory space. Addresses in the upper 13 bits depend on the SoC
hardware integration. Address mapping in the lower 27 bits is shown in Table 10.1. All registers support
only access to word-aligned addresses. The CLINT controller adopts a continuous addressing scheme. For a
multi-cluster multi-core architecture, the number of clusters does not affect the addresses of CLINT registers,
while the number of cores affects the CLINT register addresses. The address spaces corresponding to the
cores are continuous. For example, two clusters are configured. Cluster 0 contains two cores, and Cluster
1 contains four cores. The register addresses of the two cores of Cluster 0 are specified by Cores 0 and 1,
and the register addresses of the four cores of Cluster 1 are specified by Cores 2, 3, 4, and 5. For more
information, see the following table. A CLINT controller supports up to 256 cores.

101

Chapter 10. Interrupt Controllers

Table 10.1: Memory-mapped addresses in CLINT registers

Address Name Type Initial value Description
0x4000000 MSIP0 Read/Write 0x00000000 The machine-mode (M-mode) soft-

ware interrupt pending register for
core 0.
The upper bits are tied to 0, and bit
[0] is valid.

0x4000004 MSIP1 Read/Write 0x00000000 The M-mode software interrupt
pending register for core 1. The up-
per bits are tied to 0, and bit [0] is
valid.

Reserved - - - -
0x4000000
+4*n

MSIPn Read/Write 0x00000000 n=hart_id, n<256

0x4004000 MTIMECMPL0 Read/Write 0xFFFFFFFF The M-mode clock timer
compare value register (the lower 32
bits) for core 0.

0x4004004 MTIMECMPH0 Read/Write 0xFFFFFFFF The M-mode clock timer
compare value register (the upper 32
bits) for core 0.

0x4004008 MTIMECMPL1 Read/Write 0xFFFFFFFF The M-mode clock timer
compare value register (the lower 32
bits) for core 0.

0x400400C MTIMECMPH1 Read/Write 0xFFFFFFFF The M-mode clock timer
compare value register (the upper 32
bits) for core 0.

Reserved - - - -
0x4004000
+8*n

MTIMECMPLn Read/Write 0xFFFFFFFF n=hart_id, n<256

0x4004004
+8*n+4

MTIMECMPHn Read/Write 0xFFFFFFFF n=hart_id, n<256

0x400C000 SSIP0 Read/Write 0x00000000 The supervisor-mode (S-mode) soft-
ware interrupt
pending register for core 0. The up-
per bits are tied to 0, and bit [0] is
valid.

0x400C004 SSIP1 Read/Write 0x00000000 The S-mode software interrupt
pending register for core 1.
The upper bits are tied to 0, and bit
[0] is valid.

Continued on next page

www.t-head.cn 102

Chapter 10. Interrupt Controllers

Table 10.1 – continued from previous page
Address Name Type Initial value Description
Reserved - - - -
0x400C000
+4*n

SSIPn Read/Write 0x00000000 n=hart_id, n<256

0x400D000 STIMECMPL0 Read/Write 0xFFFFFFFF The S-mode clock timer compare
value register (the lower 32 bits) for
core 0.

0x400D004 STIMECMPH0 Read/Write 0xFFFFFFFF The S-mode clock timer compare
value register (the upper 32 bits) for
core 0.

0x400D008 STIMECMPL1 Read/Write 0xFFFFFFFF The S-mode clock timer compare
value register (the lower 32 bits) for
core 0.

0x400D00C STIMECMPH1 Read/Write 0xFFFFFFFF The S-mode clock timer compare
value register (the upper 32 bits) for
core 0.

Reserved - - - -
0x400D000
+8*n

STIMECMPLn Read/Write 0xFFFFFFFF n=hart_id, n<256

0x400D004
+8*n+4

STIMECMPHn Read/Write 0xFFFFFFFF n=hart_id, n<256

0x400FFF8 CLINT_S
TIMEL

Read/Write 0x00000000 The S-mode clock timer(T-Head Ex-
tended Register)

0x400FFFC CLINT_S
TIMEH

Read/Write 0x00000000 The S-mode clock timer(T-Head Ex-
tended Register)

10.1.2 Software interrupts

The CLINT controller can generate software interrupts.

Software interrupts are controlled by the software interrupt pending registers configured with address map-
pings. M-mode software interrupts are controlled by the machine software interrupt pending (MSIP) register.
S-mode software interrupts are controlled by the supervisor software interrupt pending (SSIP) register.

You can set the xSIP bit to 1 to generate software interrupts or reset it to 0 clear software interrupts. CLINT
S-mode software interrupt requests are valid only when the CLINTEE bit is enabled for the corresponding
core.

In M-mode, the CPU is allowed to access and modify all software interrupt registers. In S-mode, the CPU
is allowed to access and modify only the SSIP register. In user mode (U-mode), the CPU has no access to
software interrupt registers.

www.t-head.cn 103

Chapter 10. Interrupt Controllers

The two groups of registers have the same structure. The bit layout and definition of the registers are shown
in Fig. 10.1 and Fig. 10.2 .

Fig. 10.1: MSIP register

MSIP: the machine software interrupt pending bit

This bit indicates the status of M-mode software interrupts.

• When the MSIP bit is 1, valid M-mode software interrupt requests are available.

• When the MSIP bit is 0, no valid M-mode software interrupt requests are available.

Fig. 10.2: SSIP register

SSIP: the supervisor software interrupt pending bit

This bit indicates the status of S-mode software interrupts.

• When the SSIP bit is 1, valid S-mode software interrupt requests are available.

• When the SSIP bit is 0, no valid S-mode software interrupt requests are available.

10.1.3 CLINT timer

Amulti-cluster multi-core system has only one 64-bit system timer that runs in the always-on voltage domain.
The system timer does not allow write operations but can be reset. You can obtain the current value of the
system timer by reading the values of CLINT_MTIME and CLINT_STIME or by reading the value of the
TIME register of the PMU. The system timer is used to provide a unified time reference for multiple cores.

A multi-cluster multi-core system has only one group of 64-bit M-mode timer registers (CLINT_MTIMEL
and CLINT_MTIMEH) and one group of 64-bit S-mode timer registers (CLINT_STIMEL and
CLINT_STIMEH). You can modify the upper or lower 32 bits of the registers to separately read the high-
order 32 bits and low-order 32 bits by word-aligned address read.

CLINT_MTIME and CLINT_STIME are self-extended registers of T-Head. The bit layout and definition
of the registers are shown in Fig. 10.3 and Fig. 10.4 .

www.t-head.cn 104

Chapter 10. Interrupt Controllers

CLINT_MTIMEH and CLINT_MTIMEL are M-mode timer registers for high-order bits and low-order bits
separately. The registers store the values of the corresponding timers.

• CLINT_MTIMEH stores the high-order 32 bits of the corresponding timer.

• CLINT_MTIMEL stores the low-order 32 bits of the corresponding timer.

CLINT_STIMEH and CLINT_STIMEL are S-mode timer registers for high-order bits and low-order bits
separately. The registers store the values of the corresponding timers.

• CLINT_STIMEH stores the high-order 32 bits of the corresponding timer.

• CLINT_STIMEL stores the low-order 32 bits of the corresponding timer.

Fig. 10.3: CLINT_MTIME register

Fig. 10.4: CLINT_STIME register

10.1.4 Timer interrupts

The CLINT controller can generate timer interrupts.

A multi-core system has only one 64-bit system timer, mtime. mtime must run in the always-on voltage
domain. mtime cannot be written but can be reset. The current value of mtime can be read from the time
register of the performance monitoring unit (PMU). mtime is used to provide a unified time reference for
multiple cores.

Each core has a group of 64-bit M-mode clock timer compare value registers (mtimecmpl and mtimecmph)
and a group of 64-bit S-mode clock timer compare value registers (stimecmpl and stimecmph). You can
modify the upper or lower 32 bits of these registers through word-aligned address access.

The CLINT controller compares the value of {CMPH[31:0], CMPL[31:0]} with the current value of mtime to
determine whether to generate a timer interrupt. When the value of {CMPH[31:0], CMPL[31:0]} is greater
than the current value of mtime, the CLINT controller does not generate an interrupt. When the value
of {CMPH[31:0], CMPL[31:0]} is less than or equal to the current value of mtime, the CLINT controller
generates a corresponding timer interrupt. You can rewrite the value of the mtimecmp/stimecmp register to
clear the corresponding timer interrupt. S-mode timer interrupt requests are valid only when the CLINTEE
bit is enabled for the corresponding core.

www.t-head.cn 105

Chapter 10. Interrupt Controllers

In M-mode, the CPU is allowed to access and modify all timer interrupt registers. In S-mode, the CPU
is allowed to access and modify only the stimecmpl and stimecmph registers. In U-mode, the CPU has no
access to timer interrupt registers.

The two groups of registers have the same structure. The bit layout and definition of the registers are shown
in Fig. 10.5 .

Fig. 10.5: mtimecmph/mtimecmpl registers

mtimecmph/mtimecmpl: the M-mode clock timer compare value registers for the upper bits
and the lower bits

These registers store timer compare values.

• mtimecmph: stores the upper 32 bits of timer compare values.

• mtimecmpl: stores the lower 32 bits of timer compare values.

Fig. 10.6: stimecmph/stimecmpl registers

stimecmph/stimecmpl: the S-mode clock timer compare value registers for the upper bits and
the lower bits

These registers store timer compare values.

• stimecmph: stores the upper 32 bits of timer compare values.

• stimecmpl: stores the lower 32 bits of timer compare values.

10.2 Platform-level interrupt controller (PLIC)

The PLIC controls sampling, priority arbitration, and distribution of external interrupt sources.

In the PLIC model, the M-mode and S-mode of each core can act as valid interrupt targets.

The PLIC of C908 provides the following features:

• PLIC supports up to 256 cores, each with 2 interrupt targets: machine mode and supervisor mode.

• Sampling of up to 1023 interrupt sources, supporting level and pulse interrupts;

• 32 interrupt priorities;

www.t-head.cn 106

Chapter 10. Interrupt Controllers

• Independent enable for each interrupt target;

• Independent interrupt threshold for each interrupt target;

• Configurable access permissions on PLIC registers.

10.2.1 Interrupt arbitration

In the PLIC, only interrupt sources that meet the specified conditions are involved in arbitration on an
interrupt target. The conditions include:

• The interrupt source is in the pending state (IP = 1).

• The interrupt priority is greater than 0.

• The enable bit for the interrupt target is enabled.

When multiple interrupts for an interrupt target are in the pending state, the PLIC selects the interrupt with
the highest priority through arbitration. In the PLIC of C908, M-mode interrupts have higher priorities than
S-mode interrupts. In the same privilege mode, a larger value of the priority configuration register indicates
a higher priority. Interrupts with a priority of 0 are invalid. If multiple interrupts have the same priority,
they will be handled in ascending order of IDs.

The PLIC stores interrupt IDs that are determined based on arbitration results to the interrupt
claim/complete register of the corresponding interrupt target.

10.2.2 Interrupt request and response

When the PLIC has a valid interrupt request for an interrupt target and the interrupt priority is higher than
the interrupt threshold of the interrupt target, the PLIC sends the interrupt request to the interrupt target.
When receiving the interrupt request, the interrupt target sends an interrupt response message to the PLIC
if it is able to respond to the interrupt request.

The interrupt response mechanism functions as follows:

• The interrupt target initiates a read operation to the corresponding interrupt claim/complete register.
The read operation returns the interrupt ID determined by the PLIC. The interrupt target proceeds
to further processing based on the interrupt ID. If the interrupt ID is 0, no valid interrupt request is
available, and the interrupt target ends the interrupt handling process.

• After receiving the read operation initiated by the interrupt target and returning the interrupt ID, the
PLIC resets the IP bit of the interrupt source corresponding to the interrupt ID, and blocks subsequent
sampling on the interrupt source before the current interrupt is completed.

When the L2 ECC feature is configured, the L2 ECC FATAL interrupt number is determined by the customer’
s decision on the integration of the interrupt controller.

www.t-head.cn 107

Chapter 10. Interrupt Controllers

10.2.3 Interrupt completion

After interrupt handling is completed, the interrupt target sends an interrupt completion message to the
PLIC. The interrupt completion mechanism functions as follows:

• The interrupt target initiates a write operation to the corresponding interrupt claim/complete register,
to write the ID of the completed interrupt to the register. If the interrupt is a level interrupt, the
external interrupt source must be cleared before the write operation is initiated.

• After receiving the interrupt completion message, the PLIC does not update the interrupt
claim/complete register, but unblocks sampling on the interrupt source corresponding to the inter-
rupt ID to end the interrupt handling process.

10.2.4 PLIC register address mapping

The PLIC occupies a 64 MB memory space. Addresses in the upper 13 bits depend on the SoC hardware
integration. Address mapping in the lower 27 bits is shown in Table 10.2.

All registers support only word-aligned address access. That is, you need to use the load word instruction to
access PLIC registers, and the result is stored in the low-order 32 bits of the 64-bit GPR. The PLIC adopts
a continuous addressing scheme. For a multi-cluster multi-core architecture, the number of clusters does not
affect the addresses of PLIC registers, while the number of cores affects the PLIC register addresses. The
address spaces corresponding to the cores are continuous. For example, two clusters are configured. Cluster
0 contains two cores, and Cluster 1 contains four cores. The register addresses of the two cores of Cluster
0 are specified by Cores 0 and 1, and the register addresses of the four cores of Cluster 1 are specified by
Cores 2, 3, 4, and 5. For more information, see the following table.

Note: Registers not supported by C908 are marked as reserved.

Table 10.2: PLIC register address mapping

Address Name Type Initial
value

Description

0x0000000 - - - -
0x0000004 PLIC_PRIO1 R/W 0x0 The

priority configuration register for inter-
rupts 1 to 1023.

0x0000008 PLIC_PRIO2 R/W 0X0
0x000000C PLIC_PRIO3 R/W 0x0
⋯ ⋯ ⋯ ⋯
0x0000FFC PLIC_PRIO1023 R/W 0x0
0x0001000 PLIC_IP0 R/W 0x0 The

interrupt pending register for interrupts
1 to 31.

Continued on next page

www.t-head.cn 108

Chapter 10. Interrupt Controllers

Table 10.2 – continued from previous page
Address Name Type Initial

value
Description

0x0001004 PLIC_IP1 R/W 0x0 The
interrupt pending register for interrupts
32 to 63.

⋯ ⋯ ⋯ ⋯ ⋯

0x000107C PLIC_IP31 R/W 0x0 The
interrupt pending register for interrupts
992 to 1023.

Reserved - - - -
0x0002000 PLIC_H0_MIE0 R/W 0x0 The

M-mode interrupt enable register for in-
terrupts 1 to 31 in core 0.

0x0002004 PLIC_H0_MIE1 R/W 0x0 The
M-mode interrupt enable register for in-
terrupts 32 to 63 in core 0.

⋯ ⋯ ⋯ ⋯ ⋯

0x000207C PLIC_H0_MIE31 R/W 0x0 The
M-mode interrupt enable register for in-
terrupts 992 to 1023 in core 0.

0x0002080 PLIC_H0_SIE0 R/W 0x0 The
S-mode
interrupt enable register for interrupts 1
to 31 in core 0.

0x0002084 PLIC_H0_SIE1 R/W 0x0 The
S-mode
interrupt enable register for interrupts
32 to 63 in core 0.

⋯ ⋯ ⋯ ⋯ ⋯

0x00020FC PLIC_H0_SIE31 R/W 0x0 The
S-mode interrupt enable register for in-
terrupts 992 to 1023 in core 0.

0x0002100 PLIC_H1_MIE0 R/W 0x0 The
M-mode interrupt enable register for in-
terrupts 1 to 31 in core 1.

0x0002104 PLIC_H1_MIE1 R/W 0x0 The
M-mode interrupt enable register for in-
terrupts 1 to 31 in core 0.

⋯ ⋯ ⋯ ⋯ ⋯

Continued on next page

www.t-head.cn 109

Chapter 10. Interrupt Controllers

Table 10.2 – continued from previous page
Address Name Type Initial

value
Description

0x000217C PLIC_H1_MIE31 R/W 0x0 The
M-mode interrupt enable register for in-
terrupts 1992 to 1023 in core 0.

0x0002180 PLIC_H1_SIE0 R/W 0x0 The
S-mode
interrupt enable register for interrupts 1
to 31 in core 1.

0x0002184 PLIC_H1_SIE1 R/W 0x0 The
S-mode
interrupt enable register for interrupts
32 to 63 in core 1.

⋯ ⋯ ⋯ ⋯ ⋯

0x00021FC PLIC_H1_SIE31 R/W 0x0 The
S-mode interrupt enable register for in-
terrupts 992 to 1023 in core 1.

Reserved - - - -
0x0002000
+0x100*n

PLIC_Hn_MIE0 R/W 0x0 The M-mode
interrupt enable register for interrupts 1
to 31 in core n.
n=hart_id ，n<256

0x0002004
+0x100*n

PLIC_Hn_MIE1 R/W 0x0 The M-mode
interrupt enable register for interrupts
32 to 63 in core n.
n=hart_id ，n<256

⋯ ⋯ ⋯ ⋯ ⋯

0x000207C
+0x100*n

PLIC_Hn_MIE31 R/W 0x0 The M-mode
interrupt enable register for interrupts
992 to 1023 in core n.
n=hart_id ，n<256

0x0002080
+0x100*n

PLIC_Hn_SIE0 R/W 0x0 The S-mode
interrupt enable register for interrupts 1
to 31 in core n.
n=hart_id ，n<256

0x0002084
+0x100*n

PLIC_Hn_SIE1 R/W 0x0 The S-mode
interrupt enable register for interrupts
32 to 63 in core n.
n=hart_id ，n<256

Continued on next page

www.t-head.cn 110

Chapter 10. Interrupt Controllers

Table 10.2 – continued from previous page
Address Name Type Initial

value
Description

⋯ ⋯ ⋯ ⋯ ⋯

0x00020FC
+0x100*n

PLIC_Hn_SIE31 R/W 0x0 The S-mode
interrupt enable register for interrupts
992 to 1023 in core n.
n=hart_id ，n<256

0x01FFFFC PLIC_CTRL R/W 0x0 The PLIC permission control register.
0x0200000 PLIC_H0_MTH R/W 0x0 The M-mode interrupt

threshold register for core 0.
0x0200004 PLIC_H0_MCLAIMR/W 0x0 The M-mode interrupt

claim/complete register for core 0.
Reserved - - - -
0x0201000 PLIC_H0_STH R/W 0x0 The S-mode interrupt

threshold register for core 0.
0x0201004 PLIC_H0_SCLAIM R/W 0x0 The S-mode interrupt

claim/complete register for core 0.
Reserved - - - -
0x0202000 PLIC_H1_MTH R/W 0x0 The M-mode interrupt

threshold register for core 1.
0x0202004 PLIC_H1_MCLAIMR/W 0x0 The M-mode interrupt

claim/complete register for core 1.
Reserved - - - -
0x0200000
+0x2000*n

PLIC_Hn_MTH R/W 0x0 The M-mode interrupt threshold register
for core n. n=hart_id ，n<256

0x0203004
+0x2000*n

PLIC_Hn_MCLAIMR/W 0x0 The M-mode interrupt
claim/complete register for core n.

0x0201000
+0x2000*n

PLIC_Hn_STH R/W 0x0 The S-mode interrupt threshold register
for core n. n=hart_id ，n<256

0x0201004
+0x2000*n

PLIC_Hn_SCLAIM R/W 0x0 The S-mode interrupt
claim/complete register for core n.
n=hart_id ，n<256

As shown in Fig. 10.7, the total address space occupied by PLIC and CLINT is 128MB, and the base
address of this space is determined by pad_cpu_apb_base (an input port, please refer to the C908 integration
manual). It should be noted that the attribute of this space needs to be set to Strong Ordered.

www.t-head.cn 111

Chapter 10. Interrupt Controllers

Fig. 10.7: PLIC&CLINT address space

10.2.5 PLIC_PRIO register

This register is used to set the priorities of interrupt sources. You can refer to the description of the privilege
control register (PLIC_CTRL) for the read and write permissions of PLIC_PRIO register. The bit layout
and definition of PLIC_PRIO are shown in Fig. 10.8 .

Fig. 10.8: PLIC_PRIO register

PRIO: the interrupt priority

The lower 5 bits of the PLIC_PRIO register are writable. The PLIC_PRIO register supports
32 interrupt priorities. Interrupts with a priority of 0 are invalid.

M-mode interrupts have higher priorities than S-mode interrupts in any conditions. In the same
privilege mode, the priority 1 is the lowest priority, and the priority 31 is the highest priority.
When multiple interrupts have the same priority, interrupt IDs are further compared, and the
one with a smaller ID has a higher priority.

10.2.6 PLIC_IP register

The PLIC can read the PLIC_IP register to obtain the pending state of each interrupt. If the ID of an
interrupt is N, the interrupt information is stored in IP y (y = N mod 32) in the PLIC_IP x (x = N/32)
register. Bit 0 of the PLIC_IP0 register is tied to 0. You can refer to the description of the privilege control
register (PLIC_CTRL) for the read and write permissions of PLIC_PRIO. The bit layout and definition of
the register are shown in Fig. 10.9 .

www.t-head.cn 112

Chapter 10. Interrupt Controllers

Fig. 10.9: PLIC_IP x register

IP: the interrupt pending state bit

This bit indicates the interrupt pending state of the corresponding interrupt source.

When the IP bit is 1, the interrupt source has pending interrupts. You can run a memory store
instruction to set this bit to 1. When the sampling logic of the interrupt source detects valid
level or pulse interrupts, this bit is also set to 1.

When the IP bit is 0, the interrupt source has no pending interrupt. You can run a memory store
instruction to reset this bit. After an interrupt is handled, PLIC clears the corresponding IP bit.

10.2.7 PLIC_IE register

Each interrupt target has an interrupt enable bit for each interrupt source, to enable the corresponding
interrupts. The M-mode interrupt enable register is used to enable M-mode external interrupts. The S-
mode interrupt enable register is used to enable S-mode external interrupts.

If the ID of an interrupt is N, the interrupt enable information is stored in IE y (y = N mod 32) in the
PLIC_IE x (x = N/32) register. The IE bit corresponding to ID0 is set to 0. For more information about
the read and write permissions on the register, see the descriptions of the PLIC_PER register.

The bit layout and definition of the register are shown in Fig. 10.10.

Fig. 10.10: PLIC_IE x register

IE: the interrupt enable state bit

This bit indicates the interrupt enable state of the corresponding interrupt source.

When the IE bit is 1, the interrupt source is enabled for the interrupt target.

When the IE bit is 0, the interrupt source is disabled for the interrupt target.

www.t-head.cn 113

Chapter 10. Interrupt Controllers

10.2.8 PLIC_CTRL register

The PLIC_CTRL register is used to control access permissions on PLIC registers in S-mode.

Fig. 10.11: PLIC_CTRL register

S_PER: the access permission control bit

When the S_PER bit is 0, the CPU has access to all PLIC registers only in M-mode. In S-mode,
the CPU has access only to the S-mode PLIC_TH register and S-mode PLIC_CLAIM register,
but not to the PLIC_PER, PLIC_PRIO, PLIC_IP, or PLIC_IE register. In U-mode, the CPU
has no access to any PLIC registers.

When the S_PER bit is 1, the CPU has access to all PLIC registers in M-mode, and has access
to all PLIC registers except PLIC_PER in S-mode. In U-mode, the CPU has no access to any
PLIC registers.

10.2.9 PLIC_TH register

Each interrupt target has a PLIC_TH register. The PLIC initiates an interrupt request to an interrupt target
only when the interrupt request is valid and the interrupt priority is higher than the interrupt threshold of
the interrupt target. For more information about the read and write permissions on the register, see the
descriptions of the PLIC_PER register.

The bit layout and definition of the register are shown in Fig. 10.12 .

Fig. 10.12: PLIC_TH register

PRIOTHRESHOLD: the priority threshold

This bit indicates the interrupt threshold of the current interrupt target. When the interrupt
threshold is 0, all interrupts are allowed.

www.t-head.cn 114

Chapter 10. Interrupt Controllers

10.2.10 PLIC_CLAIM register

Each interrupt target has a PLIC_CLAIM register. When the PLIC completes arbitration, this register is
updated to the interrupt ID obtained in the current arbitration. For more information about the read and
write permissions on the register, see the descriptions of the PLIC_CTRL register.

The bit layout and definition of the register are shown in Fig. 10.13 .

Fig. 10.13: PLIC_CLAIM register

CLAIM_ID: the interrupt request ID

A read operation to the register returns the ID currently stored in the register. The read operation
indicates that the interrupt corresponding to the ID is in the process of handling. The PLIC
starts the interrupt claim process.

A write operation to the register indicates that the interrupt corresponding to the ID to be
written has been handled. The write operation does not update the PLIC_CLAIM register. The
PLIC starts the interrupt complete process.

10.3 Multi-core interrupts

This section describes two common multi-core interrupt scenarios.

10.3.1 Multiple cores respond to external interrupts in parallel

In the PLIC model, one interrupt source can be mapped to multiple cores. When the interrupt source gener-
ates an interrupt request, the interrupt request is in the pending state with respect to multiple cores. Different
cores run in different states, and they respond to the interrupt successively and read the PLIC_CLAIM regis-
ter to obtain the interrupt ID. Design of the PLIC ensures that only the first core accessing the PLIC_CLAIM
register obtains the valid ID, and other cores obtain an invalid ID (ID = 0) and therefore do not handle the
interrupt. In this case, the interrupt is handled only once.

Mapping an interrupt to multiple cores reduces the overall interrupt response time because any one of the
cores has an opportunity to handle the interrupt. However, bandwidth of the cores that obtain the invalid
ID is consumed, wasting additional CPU resources.

Assuming there are two external interrupt sources, and the CPU is configured with 4 cores: Source 1 and
Source 2. Source 1 is mapped to Core 0, Core 1 and Source 2 is mapped to Core 1, Core 2, and Core 3.
Additionally, it is assumed that the priority of Source 2 is higher.

• When only Source 1 occurs, it may be processed by any core among Core 0, Core 1, and Core 2.

www.t-head.cn 115

Chapter 10. Interrupt Controllers

• When only Source 2 occurs, it may be processed by any core among Core 1, Core 2, and Core 3.

• When two interrupts occur simultaneously, there will be priority arbitration in Core 1 and Core 2, and
the result is that Source 2 wins. Therefore, Source 2 may be processed by any core among Core 1,
Core 2 or Core 3. Source 1 may be processed by Core 0.

10.3.2 Send software interrupts across cores

In the programming model of the CLINT controller, software interrupts are stored in dedicated registers:

• M-mode software interrupts are stored in the MSIP0, MSIP1, MSIP2 and MSIP3 registers.

• S-mode software interrupts are stored in the SSIP0, SSIP1, SSIP2 and SSIP3 registers.

Addresses of the preceding registers are unified and known to all cores. Each core can initiate write operations
to the registers to send software interrupts to other cores or itself.

www.t-head.cn 116

CHAPTER 11

Bus Interface

11.1 AXI master device interface

The master device interface of C908MP supports the AMBA 4.0 ACE or AXI protocol. For more information,
see AMBA Specifications —AMBA® AXI™ and ACE™ Protocol Specification.

11.1.1 Features of the AXI master device interface

The AXI master device interface controls address accesses and data transmission between C908 and the AXI
bus. It provides the following features:

• Complies with the AMBA 4.0 ACE or AXI protocol.

• Supports a bus width of 128 bits.

• Supports different frequency ratios between the system clock and the CPU master clock.

• Supports flop-out of all output signals and flop of all input signals to obtain better timing.

11.1.2 Outstanding capability of the AXI master device interface

This section describes the outstanding capability of the AXI master device interface provided by C908.

117

Chapter 11. Bus Interface

Table 11.1: Outstanding capability of the AXI master device in-
terface

Parameter Value Description
Read Issuing Capability 8n+26

n = Number of cores
Each core can issue up to 8 non-cacheable and
device read requests.
All cores can issue up to 32 non-cacheable and
device read requests.
All cores can issue up to 26 cacheable read re-
quests.

Write Issuing Capability 12n+32
n = Number of cores

Each core can issue up to 12 non-cacheable and
device write requests.
All cores can issue up to 32 non-cacheable and
device write requests.
All cores can issue up to 32 cacheable write
requests.

Table 11.2: ARID encoding of the AXI master device interface

ARID[7:0] Scenario Outstanding requests of each ID
{2’b10, 6’b??????} Cacheable read requests Each ID has no outstanding re-

quests. All cacheable write requests
are outstanding. A total of 26 out-
standing requests are supported.

{1’b0, 2’b(coreid), 5’h00???} Non-cacheable and weak-
ordered read requests

Non-cacheable and strong-ordered
write requests are outstanding. A
total of 31 outstanding requests are
supported.

{1’b0, 2’b(coreid), 5’h10} Non-cacheable and weak-
ordered fetch requests

{1’b0, 2’b(coreid), 5’h1e} Non-cacheable and weak-
ordered exclusive lock ac-
quisition and read request

{1’b0, 2’b(coreid), 5’h1d} Non-cacheable and strong-
ordered read requests

www.t-head.cn 118

Chapter 11. Bus Interface

Table 11.3: AWID encoding of the AXI master device interface

AWID[7:0] Scenario Outstanding requests of each ID
{3’b111, 5’b?????} Cacheable write requests Each ID has no outstanding re-

quests. All cacheable write requests
are outstanding. A total of 32 out-
standing requests are supported.

{4’b0000, 4’b????} Non-cacheable and weak-
ordered write requests

Each ID has no outstanding re-
quests. All non-cacheable and weak-
ordered write requests are outstand-
ing. A total of 16 outstanding re-
quests are supported.

{1’b0, 2’b(coreid), 5’h1e} Non-cacheable and strong-
ordered exclusive lock ac-
quisition and write request

Each ID has no outstanding re-
quests.

{1’b0, 2’b(coreid), 5’h1d} Non-cacheable and strong-
ordered write requests

Non-cacheable and strong-ordered
write requests are outstanding. A
total of 31 outstanding requests are
supported.

Note: The ARID and AWID encoding may vary with evolution of the CPU version. Therefore, SoC inte-
gration should not depend on specific IDs, but should conform to general-purpose rules of the ACE/AXI
protocol.

11.1.3 Supported transmission types of Master Device

The AXI master device interface supports the following transmission types:

• Burst types: INCR and WRAP (Other burst types are not supported);

• Transmission lengths: 1 and 4 (Other transmission lengths are not supported);

• Exclusive access;

• Transmission sizes: quadword, doubleword, word, halfword, and byte (Other sizes are not supported);

• Read/write operation.

Note: The master device interface of C908 implements only a subset of all AXI transmission types. Therefore,
SoC integration should not depend on specific transmission types, but should conform to general-purpose
rules of the AXI protocol.

11.1.4 Supported response types of Master Device

The AXI master device interface supports the following types of responses from slave devices:

www.t-head.cn 119

Chapter 11. Bus Interface

• OKAY

• EXOKAY

• SLVERR

• DECERR

11.1.5 CPU behavior in different bus responses

CPU behavior in different bus responses is shown in Table 11.4.

Table 11.4: Bus exception handling

RRESP/BRESP Result
OKAY Indicates that common transfer access succeeds or exclusive transfer ac-

cess fails. If exclusive read transfer access fails, it indicates that the
bus does not support exclusive transfer, and an access error exception is
generated. If exclusive write transfer access fails, it indicates that lock
preemption fails, and no exception is generated.

EXOKAY Indicates that exclusive access succeeds.
SLVERR/DECERR Indicates that an access error occurs. If this error occurs in read transfer,

an exception is generated. If this error occurs in write transfer, it is
ignored.

11.2 Device coherence port

The device coherence port (DCP) provided by C910 and C908MP is a user-configurable interface that can
be used for peripheral devices to access the L2 cache and L1 data cache (D-Cache). The DCP maintains
data consistency between peripherals and CPU chips. The DCP supports the AMBA AXI4 protocol. For
more information, see AMBA® AXI™ and ACE™ Protocol Specification .

11.2.1 Features of DCP

The DCP provides the following basic features:

• Supports the AMBA 4.0 AXI bus protocol.

• Supports a bus width of 128 bits.

• Supports different frequency ratios of the system clock to the CPU master clock.

• Supports flop-out of all output signals and flop-in of all input signals to obtain better timing.

• Supports up to eight concurrent transfers for both read operations and write operations.

www.t-head.cn 120

Chapter 11. Bus Interface

11.2.2 Supported transfer types of DCP

The DCP supports the following transfer features:

• Only the INCR transfer mode is supported, and LEN only supports 0 and 3.

• CACHE[3:0] must be 4’b1111, 4’b1011, or 4’b0111. Otherwise, SLVERR is returned.

• SIZE[2:0] must be 3’b100. Otherwise, SLVERR is returned.

• Exclusive access is not supported.

• WSTRB can be a value of any byte when LEN is 0 and must be 1 in all bits when LEN is 3.

• AxADDR is 16B boundary aligned when LEN is 0 and 64B boundary aligned when LEN is 3.

• The 5-bit AxID signal width is supported.

• Read operations and write operations are supported.

11.2.3 Supported response types of DCP

The DCP supports the following response types:

• OKAY

• SLVERR

11.2.4 Responses issued for different behaviors

Table 11.5 describes the types of responses that can be returned from the DCP.

Table 11.5: Responses Returned From DCP

RRESP/BRESP Result
OKAY The transfer access was successful and the received request was properly processed.
SLVERR Access error. An unsupported type of transfer was received.

11.3 Low Latency Port

The low latency port (LLP) provided by C908MP is a user-configurable master interface that can be used to
access peripheral devices of the system. The LLP supports the AMBA AXI4 protocol. For more information,
see AMBA® AXI™ and ACE™ Protocol Specification .

www.t-head.cn 121

Chapter 11. Bus Interface

11.3.1 Features of LLP

The LLP provides the following basic features:

• Supports the AXI4.0 protocol.

• Supports a data bus width of 128 bits and an address bus width of 40 bits.

• Supports up to 8 outstanding read requests and 12 outstanding write requests for each core. Four cores
can issue up to 32 outstanding read requests and 32 outstanding write requests.

• Supports an 1:N frequency ratio of CPU to LLP (N indicates an integer and � 8).

• Supports all bus responses.

• Supports non-aligned access.

11.3.2 Outstanding capabilities of LLP

This section describes the outstanding capabilities of the LLP provided by C908.

Table 11.6: the outstanding capabilities provided by the LLP

Parameter Value Description
Read Issuing Capability 8n

n indicates the
number of cores.

Each core can issue up to 8 read requests.
Four cores can issue up to 32 read requests.

Write Issuing Capability 12n
n indicates the
number of cores.

Each core can issue up to 12 write requests.
Four cores can issue up to 32 write requests.

Table 11.7: AXI LLP ARID encoding

ARID[7:0] Application scenario Outstanding capability of each ID
{1’b0, 2’b(coreid), 5’
b00???}

Non-cacheable weak-
ordered read requests

All non-cacheable outstanding read requests are
outstanding. A total of 32 outstanding requests
are supported.{1’b0, 2’b(coreid), 5’h10} Non-cacheable weak-

ordered value-taking
requests

{1’b0, 2’b(coreid), 5’h1e} Non-cacheable weak-
ordered lock preemp-
tion requests

{1’b0, 2’b(coreid), 5’h1d} Non-cacheable strong-
ordered read requests

www.t-head.cn 122

Chapter 11. Bus Interface

• The same ID on the AR channel will not appear on the master device interface and LLP at the same
time.

Table 11.8: AXI LLP AWID encoding

AWID[7:0] Application scenario Outstanding capability of each ID
{4’b0000, 4’b????} Non-cacheable weak-

ordered write requests
Each ID has no outstanding requests. All non-
cacheable weak-ordered write requests are out-
standing. A total of 16 outstanding requests are
supported.

{1’b0, 2’b(coreid), 5’
h1e}

Non-cacheable weak-
ordered lock preemption
write requests

Each ID has no outstanding requests.

{1’b0, 2’b(coreid), 5’
h1d}

Non-cacheable strong-
ordered write requests

Non-cacheable strong-ordered write requests are
outstanding. A total of 32 outstanding requests are
supported.

• The same ID on an AW channel will not appear on the master device interface and LLP at the same
time.

Note: The preceding rules for encoding ARIDs and AWIDs may change with the evolution of CPU versions.
Therefore, when you are integrating your SoC, do not specify ID values. Instead, you must follow the general
rules of the AXI protocol.

11.3.3 Supported transfer types of LLP

The LLP supports the following transfer features:

• Supports only INCR and does not support FIXED and WRAP.

• Supports 8’b0 for LEN.

• Supports exclusive access.

• Supports the non-cacheable normal memory access and device properties.

• Supports non-aligned access.

• Supports a size of 3’b000 to 3’b100 (from 1B to 16B).

• For normal memory non-cacheable regions, write requests can be merged. wstrb can issue any value,
and the Axsize is fixed at 3’b100.

• For device regions, the Axsize can be a value ranging from 3’b000 to 3’b011.

Note: The LLP of C908 implements only one subset of AXI transfer types. SoC integration should not
depend on specific transfer types and should conform to the general rules of the AXI protocol.

www.t-head.cn 123

Chapter 11. Bus Interface

11.3.4 Supported response types of LLP

The LLP supports the following response types:

• OKAY

• EXOKAY

• SLVERR

• DECERR

www.t-head.cn 124

CHAPTER 12

Debug

12.1 Features of the debug unit

C908 is compatible with the RISC-V Debug V0.13.2 protocol. The peripheral debug interface supports two
modes: two-wire JTAG (a T-Head custom protocol) and 5-wire JTAG (standard JTAG5).

The debug interface provides an interaction channel between software and the CPU. You can call the debug
interface to obtain information stored in registers and memory of the CPU and information about other
on-chip devices. You can also call the debug interface to download programs.

The debug interface provides the following features:

• Supports two-wire JTAG and 5-wire JTAG.

• Supports multi-cluster debugging.

• Supports synchronous and asynchronous debug, enabling the CPU to enter the debug mode in extreme
conditions.

• Supports software breakpoints.

• Supports multiple memory breakpoints.

• Enables you to check and set the values of CPU registers.

• Enables you to check and modify memory values.

• Enables the CPU to run an instruction in a single step or multiple steps.

• Enables you to quickly download programs.

125

Chapter 12. Debug

• Enables the CPU to enter the debug mode after it is reset.

Debug of C908 is jointly completed by the debug software, debug proxy, debugger, and debug interface. The
location of the debug interface in the CPU debug environment is shown in Fig. 12.1 . The debug software is
connected to the debug proxy over network. The debug proxy is connected to the debugger through a USB
interface. The debugger communicates with the debug interface in JTAG mode.

Fig. 12.1: Location of the debug interface in CPU debug environment

12.2 Debugging resource configuration

C908 supports three types of debug resource configurations:

• Minimum configuration: 1 program buffer with implicit EBREAK implemented and 1 hardware break-
point.

• Typical configuration: 2 program buffers with implicit EBREAK implemented, 3 hardware breakpoints,
and 8 PCFIFO entries for recording historical PC jump streams.

• Maximum configuration: 2 program buffers with implicit EBREAK implemented, 8 hardware break-
points that can form a trigger chain, and 16 PCFIFO entries for recording historical PC jump streams,
and an independent debug AHB interface for independent memory space access.

The RISC-V Debug protocol defines multi-function triggers for implementing breakpoints and watchpoints.
Supported trigger types:

• Instruction address type: matches the instruction address (that is the instruction PC). This type
functions similarly to traditional breakpoints.

www.t-head.cn 126

Chapter 12. Debug

• Instruction data type: matches the instruction code.

• Access address type: matches the memory address specified in the access instruction. This type
functions similarly to traditional watchpoints.

• Access data type: matches the access data specified in the access instruction.

The RISC-V Debug protocol also defines 6 matching modes. The matching modes and the trigger types are
orthogonal.

1. Congruent matching: When the CPU PC value is the same as the trigger value, the trigger is fired.

2. Low-bit mask matching: It can be set to do not compare low-order bits. In this case, when the CPU
PC value is the same as the trigger value, the trigger is fired.

3. Greater than or equal to comparison: When the CPU PC value is greater than or equal to the trigger
value, the trigger is fired.

4. Less than comparison: When the CPU PC value is less than the trigger value, the trigger is fired.

5. Mask matching with the lower half: The trigger value is split into two halves: the upper half [63:32]
and the lower half [31:0]. The upper half is used as the mask, and the lower half is used as the template.
When the [31:0] part of the trigger value is equal to the [31:0] part of the CPU value and the [63:32]
part of the trigger value, the trigger is fired.

6. Mask matching with the upper half: The trigger value is split into two halves: the upper half [63:32]
and the lower half [31:0]. The upper half is used as the mask, and the lower half is used as the template.
When the [31:0] part of the trigger value is equal to the [63:32] part of the CPU value and the [63:32]
part of the trigger value, the trigger is fired.

For more information, see 5.2.9 match control”in RISC-V External Debug Support Version 0.13.2 .

In addition to the preceding features, each configuration supports software breakpoints, abstract command
registers, entering debug in asynchronous mode or after reset, single-step instruction execution, and other
debug resources and methods.

www.t-head.cn 127

CHAPTER 13

Power Management

C908 supports flexible power consumption management. It supports multiple power domains, single-core
power-off, multi-cluster power-off, retention mode of L2 SRAM (when SRAM with the retention feature is
used in L2), clearing L2 cache through external hardware interfaces, and other operations. This chapter
describes the power consumption management features of C908.

13.1 Power domain

C908 supports up to 6 power domains:

• PDC 0-3: Each core is a power domain, including the computing unit, control logic, and cache RAM
of the core.

• PDL2RAM: All RAM units of L2 cache are contained in this independent power domain. (When
SRAM with the retention feature is used in L2, this power domain exists.)

• PDL2SYS: The PDL2SYS power domain covers other domains in a cluster except the PDC 0-3 and
PDL2RAM domains, including CIU, L2C CTRL, Debug, SYSIO, and other sub-modules.

13.2 Overview of low-power modes

C908 supports the following low-power modes:

• Normal mode: The cores and L2 are running properly.

128

Chapter 13. Power Management

• Core WFI mode: Some cores are in the wait for interrupt (WFI) mode.

• Individual-core power-off: Some cores are powered off.

• L2 RAM retention mode: Except L2 RAM, other modules in a cluster, including the four cores and
L2 control logic, are power off.

• Cluster power-off: All modules in a cluster are power off.

13.3 Core WFI process

By executing the WFI low power instruction, a core enters WFI mode and outputs signal
core(x)_pad_lpmd_b[1:0]=2’b00, which indicates that the core has entered WFI mode. The L2 sub-
system will disable the global ICG of this core inside the cluster.

The core will be woken up and exit WFI mode upon the occurrence of the following events:

• Reset

• Interrupt request: external interrupt, software interrupt, or timer interrupt requests sent by the PLIC
or CLINT submodules.

• Debug request

When one of the following events occurs, the core is temporarily woken up to process the event. It reenters
low power mode after the event is processed. The core does not exit WFI mode during the entire process.

• Snoop request: Snoop requests sent by other cores.

13.4 Individual-core power-off process

The system can shut down the power of a core to completely terminate the static power of the core.

The process for powering off a core:

• Notifies SoC that the individual-core power-off process is to be executed. The implementation of this
step is subject to the SoC design.

• Masks all interrupt requests, including external interrupts, software interrupts, and timer interrupts,
and then disables the interrupt enable bit (MIE/SIE) of the mstatus/status register and the interrupt
enable bit of the mie/sie register. If the power-off process is executed in M-mode, the interrupt enable
bits of the mstatus and mie registers are disabled. If the power-off process is executed in S-mode, the
interrupt bits of the sstatus and sie registers are disabled.

• Disables data prefetch

• Executes D-Cache INV&CLR ALL to write dirty lines back to the L2 cache.

• Disables D-Cache (no store instruction allowed between the clear cache and disable cache operations).

www.t-head.cn 129

Chapter 13. Power Management

• Disables the SMPEN bit to mask snoop requests.

• Executes the fence iorw, iorw instruction.

• Executes the WFI instruction to enter WFI mode.

The system performs the following operations:

• Detects a valid low-power output signal core(x)_pad_lpmd_b sent from the core.

• Sets pad_tdt_dm_core_unavail[x] to 1 to mask debug requests bound for the core to be powered off.

• Activates the output signal clamp bit of the core to be powered off.

• Sets the reset signal pad_core(x)_rst_b to 0 for the core to be powered off.

• Shuts down the power to the core.

A powered-off core can restart only by reset. The process of powering on a core again:

• The system detects a specific event and determines to wake up the core.

• The system sets the reset address of the core.

• The reset signal of the core is set to 0.

• The power is turned on and the reset signal remains unreleased.

• The output signal clamp bit of the core is released.

• The reset signal of the core is released.

• The core executes the initialization program, enables the SMPEN bit, or performs initialization oper-
ations, such as enabling the MMU or D-Cache.

13.5 Cluster power-off process (hardware clearing of the L2 cache)

Ensure that the power is shut down for all cores except the main core in the cluster. The main core is the
last core to be powered off. It can be any one of the eight cores.

The main core performs the following operations:

• Notifies SoC that the cluster power-off process is to be executed. The implementation is subject to the
SoC design.

• Masks all interrupt requests, including external interrupts, software interrupts, and timer interrupts,
and then disables the interrupt enable bit (MIE/SIE) of the mstatus/status register and the interrupt
enable bit of the mie/sie register.

• Disables data prefetch

• Executes the D-Cache INV&CLR ALL operation.

• Disables D-Cache (no store instruction allowed between the clear cache and disable cache operations).

www.t-head.cn 130

Chapter 13. Power Management

• Disables the SMPEN bit.

• Executes the fence iorw, iorw instruction.

• Executes the WFI instruction to enter WFI mode.

The system performs the following operations:

• Detects a valid low-power output signal core(x)_pad_lpmd_b sent from the main core.

• Sets pad_tdt_dm_core_unavail[x] to 1 to mask debug requests bound for the main core.

• Activates the output signal clamp bit of the main core.

• Sets the reset signal pad_core(x)_rst_b to 0 for the main core.

• Shuts down the power of the main core.

• Sets pad_cpu_l2cache_flush_req to 1 to start clearing the L2 cache.

• Waits for C908 to return cpu_pad_l2cache_flush_done = 1.

• Sets pad_cpu_l2cache_flush_req to 0. (Then C908 will set cpu_pad_l2cache_flush_done to 0.)

• Ensures that there are no new requests from DCP (if configured).

• Waits for C908 to return cpu_pad_no_op = 1.

• Activates the output signal clamp bit of the top level.

• Sets the reset signal pad_cpu_rst_b of the L2 cache to 0.

• Shuts down the power of the top level.

The cluster is powered on again by reset. The process of powering on the cluster again:

• The reset signal is set to 0 for all cores in the cluster and top level.

• The power is turned on, the reset signal remains unreleased, and the PLL is stable.

• The output signal clamp bits of the cores and the top level are released.

• The reset signals of the cores and the top level are released.

• The reset exception service program is executed to recover the CPU.

13.6 Simplified scenario: overall cluster power-off process (hardware
clearing of the L2 cache)

In some systems, SoC designers may take a simple way to divide power domains. That is, take the entire
C908 cluster (8 cores and one L2 subsystem) as a power domain and power off the cluster as a whole, instead
of powering off each core separately. The cluster can be powered off (hardware clearing of the L2 cache)
through the following steps:

www.t-head.cn 131

Chapter 13. Power Management

The system performs the following operations:

• Notifies SoC that the overall cluster power-off process is to be executed. The implementation is subject
to the SoC design.

• Ensures that all existing transfers on DCP (if configured) are completed, and no new read/write
requests are sent to DCP.

The core (no need to distinguish the main core and secondary core, as the process is the same for them)
performs the following operations:

• Masks all interrupt requests including external interrupts, software interrupts, and timer interrupts,
and disables the interrupt enable bit (MIE/SIE) of the mstatus/sstatus register, as well as the interrupt
enable bit of the mie/sie register.

• Disables data prefetch

• Executes INV&CLR D-Cache ALL to write dirty lines back to the L2 cache.

• Disables D-Cache (no store instruction allowed between the clear cache and disable cache operations).

• Disables the SMPEN bit to mask snoop requests.

• Executes the fence iorw, iorw instruction.

• Executes the WFI instruction.

The system performs the following operations:

• Waits for core(x)_pad_lpmd_b[1:0]==2’b00, which means all CPU cores enter the low power state.

• Sets ad_tdt_dm_core_unavail[x] to 1 for all cores to mask debug requests.

• Sets pad_cpu_l2cache_flush_req to 1 to start hardware clearing for the L2 cache.

• Waits for C908 to return cpu_pad_l2cache_flush_done=1, which means the L2 cache is cleared.

• Sets pad_cpu_l2cache_flush_req to 0. (Then, C908 will set cpu_pad_l2cache_flush_done to 0.)

• Waits for cpu_pad_no_op==1’b1, which means the L2 cache enters the idle state. (All CPU cores
are still in the low power state.)

• Activates the output signal clamp of the cluster.

• Asserts all reset signals.

• Powers off the entire cluster.

13.7 Low power consumption related programming models and interface
signals

www.t-head.cn 132

Chapter 13. Power Management

13.7.1 Changes in Programming models

M-mode reset register (MRMR)

This register has been deprecated. If you continue to access this register, read operations return zero, write
operations are invalid, and no exceptions are triggered. The impact of this change is as follows: The reset
signal of each core is no longer controlled by MRMR. SoC can independently control the reset and reset
release bits of each core through pad_core(x)_rst_b.

M-mode snoop enable register (MSMPR)

This register is 64 bits wide. Only bit [0] has a definition (=SMPEN) and its default value is 0. This register
controls whether cores can accept snoop requests.

• When MSMPR.SMPEN is 0, the cores cannot process snoop requests, and the L2 subsystem masks
snoop requests bound for the cores.

• When MSMPR.SMPEN is 1, the cores can process snoop requests, and the L2 subsystem sends snoop
requests to the cores.

The corresponding SMPEN bit must be set to 0 before a core is powered off. After the core is powered on,
SMPEN must be set to 1 before the software enables the D-Cache and MMU. When a core is in normal
running mode, its SMPEN bit must be set to 1.

M-mode reset vector base address register (mrvbr)

Each core has an mrvbr register for determining the restart address of the core. The access permission for
mrvbr registers is MRO. The initial value of the mrvbr register of a core is determined by the hardware
signal pad_core(x)_rvba[39:1].

13.7.2 Interface signals

C908 communicates with the power management unit of SoC by using the following signals:

• core(x)_pad_lpmd_b:

Indicates whether a core is in WFI mode. 2’b11 indicates normal mode, and 2’b00 indicates WFI
mode.

• cpu_pad_no_op:

Indicates whether the L2 cache is idle. This signal is valid (a high level) when all cores enter low power
mode and the L2 cache finishes all transmissions.

• pad_cpu_l2cache_flush_req and cpu_pad_l2cache_flush_done:

Clear the L2 cache under the control of SoC. These signals are used in the cluster power-off process.
The req signal is driven by SoC, and the done signal is driven by C908.

First, SoC sets the req signal to 1 to start the L2 cache clearing process. Then C908 finishes clearing
the L2 cache and returns done = 1. Finally, SoC sets the req signal to 0 and sets the done signal to 0.

www.t-head.cn 133

CHAPTER 14

Performance Monitoring Unit

14.1 PMU overview

The performance monitoring unit (PMU) of C908 complies with the RISC-V standard and collects software
and hardware information during a program operation for software developers to optimize their programs.

The software and hardware information collected by the PMU includes the following:

• Number of running clocks and the time

• Instruction statistics

• Statistics of key components of the CPU

14.2 PMU programming model

14.2.1 PMU functions

Basic functions of the PMU are:

• Prohibits the counting of all events by using the mcountinhibit register.

• Resets the PMU counters, including mcycle, minstret, and mhpmcounter3 to mhpmcounter31.

• Configures the corresponding events for each PMU counter. In C908, the mappings between events
and counters are fixed. Therefore, events must be configured for the PMU counters based on a fixed
pattern. For example, 0x1 must be written to mhpmevent5, which means that mhpmcounter5 counts

134

Chapter 14. Performance Monitoring Unit

the number of 0x1 events (L1 ICache access count), and 0x2 must be written to mhpmevent4, which
means that mhpmevent4 counts the number of 0x2 events (L1 ICache miss count), and so forth.

• Grants access permissions. The mcounteren register determines whether PMU counters can be accessed
in S-mode, and scounteren determines whether PMU counters can be accessed in U-mode.

• Discharges the prohibition by using the mcountinhibit register and starts counting.

For more information, see PMU setting example.

14.2.2 PMU event overflow interrupt

C908 implements the M-mode event overflow mark register (mcounterof) and M-mode event interrupt enable
register (mcounterinten). For more information about register functions and read/write permissions, see
Appendix C-1 M-mode control register . In the mcounterof register, the bits and event counters are in one-
to-one correspondence, indicating whether the event counters overflow. In the mcounterinten register, the
bits and event counters are in one-to-one correspondence, indicating whether to initiate an interrupt request
when an event counter overflows.

The unified interrupt vector number of overflow interrupts initiated by the PMU is 17. The interrupt enabling
and processing process is the same as that of common interrupts.For more information, see Exceptions and
Interrupts.

14.3 PMU related control registers

14.3.1 M-mode counter access enable register (mcounteren)

The mcounteren register determines whether U-mode counters can be accessed in S-mode.

Fig. 14.1: M-mode counter access enable register (mcounteren)

www.t-head.cn 135

Chapter 14. Performance Monitoring Unit

Table 14.1: Description of the M-mode counter access enable reg-
ister

Bit Read/Write Name Description
31:3 Read/Write HPMn The access bit of the shpmcountern/hpmcountern register in

S-mode.
0: An illegal instruction exception will occur for accesses to the
shpmcountern/ hpmcountern register in S-mode.
1: The shpmcountern/hpmcountern register can be normally
accessed in S-mode.

2 Read/Write IR The access bit of the sinstret/instret register in S-mode.
0: An instruction exception will occur for accesses to the min-
stret sinstret/instret register in S-mode.
1: The sinstret/instret register can be normally accessed in S-
mode.

1 Read/Write TM The access bit of stime/time/stimecmp in S-mode.
0: An illegal instruction exception will occur for accesses to the
stime/time/stimecmp in S-mode.
1: When the corresponding bit of the mcounteren register is
1, stime/time/stimecmp can be normally accessed in S-mode.
Otherwise, an illegal instruction exception will occur.

0 Read/Write CY The access bit of the scycle/cycle register in S-mode.
0: An illegal instruction exception will occur for accesses to the
cycle scycle/cycle register in S-mode.
1: The scycle/cycle register can be normally accessed in S-
mode.

14.3.2 S-mode counter access enable register (scounteren)

The scounteren register determines whether U-mode counters can be accessed in U-mode.

Fig. 14.2: S-mode counter access enable register (scounteren)

www.t-head.cn 136

Chapter 14. Performance Monitoring Unit

Table 14.2: Description of the scounteren register

Bit Read/Write Name Description
31:3 Read/Write HPMn The access bit of the hpmcountern register in U-mode.

0: An illegal instruction exception will occur for accesses to the
hpmcountern register in U-mode.
1: When the corresponding bit of the scounteren register is 1,
the hpmcounter register can be normally accessed in U-mode.
Otherwise, an illegal instruction exception will occur.

2 Read/Write IR The access bit of the instret register in U-mode.
0: An illegal instruction exception will occur for accesses to the
instret register in U-mode.
1: When the corresponding bit of the scounteren register is 1,
the instret register can be normally accessed in U-mode. Oth-
erwise, an illegal instruction exception will occur.

1 Read/Write TM The access bit of the time register in U-mode.
0: An illegal instruction exception will occur for accesses to the
time register in U-mode.
1: When the corresponding bit of the scounteren register is 1,
the time register can be normally accessed in U-mode. Other-
wise, an illegal instruction exception will occur.

0 Read/Write CY The access bit of the cycle register in U-mode.
0: An illegal instruction exception will occur for accesses to the
cycle register in U-mode.
1: When the corresponding bit of the scounteren register is 1,
the cycle register can be normally accessed in U-mode. Other-
wise, an illegal instruction exception will occur.

14.3.3 M-mode count inhibit register (mcountinhibit)

The mcountinhibit register inhibits counting of M-mode counters. When performance analysis is not required,
counters can be disabled to reduce the power consumption of the CPU.

Fig. 14.3: M-mode count inhibit register (mcountinhibit)

www.t-head.cn 137

Chapter 14. Performance Monitoring Unit

Table 14.3: Description of the M-mode count inhibit register

Bit Read/Write Name Description
31:3 Read/Write MHPMn n Count inhibit bit of the mhpmcounter register

0: normal counting
1: counting inhibited

2 Read/Write MIR Count inhibit bit of the minstret register
0: normal counting
1: counting inhibited

1 - - -
0 Read/Write MCY Count inhibit bit of the mcycle register

0: normal counting
1: counting inhibited

14.3.4 S-mode count inhibit register (scountinhibit)

The scountinhibit register inhibits counting of S-mode counters. When performance analysis is not required,
counters can be disabled to reduce the power consumption of the CPU.

When mcounterwen.bit[n] = 1, scountinhibit[n] can be read/written in S-mode.

Fig. 14.4: S-mode count inhibit register (scountinhibit)

Table 14.4: Description of the S-mode count inhibit register

Bit Read/Write Name Description
31:3 Read/Write SHPMn n Count inhibit bit of the shpmcounter register

0: normal counting
1: counting inhibited

2 Read/Write SIR Count inhibit bit of the sinstret register
0: normal counting
1: counting inhibited

1 - - -
0 Read/Write SCY Count inhibit bit of the scycle register

0: normal counting
1: counting inhibited

www.t-head.cn 138

Chapter 14. Performance Monitoring Unit

14.3.5 S-mode write enable register (mcounterwen)

The mcounterwen register determines whether S-mode event counters can be written in S-mode. This register
is an M-mode extension register. For the register description, see Appendix C-1 M-mode control registers.

14.3.6 Performance monitoring event select register (mhpmevent3-31)

The mhpmevent3-31 register selects the counting event corresponding to a counter. In C908, a counter
corresponds to an event, which cannot be modified. Therefore, only the corresponding event ID can be
written to each event selector. An event counter performs counting normally only after the index value of
the corresponding event is written to the event selector, and the event counter is initialized by using the
csrw instruction.

Fig. 14.5: M-mode performance monitoring event select register (mhpmevent)

Table 14.5 describes the M-mode performance monitoring event select register.

Table 14.5: Description of the M-mode performance monitoring
event select register

Bit Read/Write Name Description
63:0 Read/Write Event in-

dex
Performance monitoring event index
0: no event
0x1 to 0xB4: performance monitoring events implemented by hard-
ware. For more information, see Table 14.6.
>0xB4: performance monitoring events that are not defined by
hardware. These events are customized for use by the software.

Table 14.6 describes the correspondence between event selectors, events, and counters.

Table 14.6: List of correspondence between counters and events

Index Event
0x1 L1-icache Access
0x2 L1-icache Miss
0x3 iTLB Miss
0x4 Not defined
0x5 jTLB Miss

Continued on next page

www.t-head.cn 139

Chapter 14. Performance Monitoring Unit

Table 14.6 – continued from previous page
Index Event
0x6 Condition Branch Mispred
0x7 Condition Branch
0x8 Indirect Branch Miss
0x9 Indirect Branch
0xA Not defined
0xB Store Instruction
0xC L1-dcache load access
0xD L1-dcache load miss
0xE L1-dcache store access
0xF L1-dcache store miss
0x10 Not defined
0x11 Not defined
0x12 Not defined
0x13 Not defined
0x14 Not defined
0x15 Not defined
0x16 Issue Instruction
0x17 Not defined
0x18 Not defined
0x19 Not defined
0x1A Not defined
0x1B IFU Branch Target Mispred
0x1C IFU Branch Target Instruction
0x1D ALU Instruction
0x1E Not defined
0x1F Vector SIMD Instruction
0x20 CSR Instruction
0x21 ATOMIC Instruction
0x22 Not defined
0x23 Interupt Numer
0x24 Not defined
0x25 Environment Call
0x26 Long Jump
0x27 Stalled Cycles Frontend
0x28 Stalled Cycles Backend
0x29 SYNC Stall
0x2A Float Point Instruction

Continued on next page

www.t-head.cn 140

Chapter 14. Performance Monitoring Unit

Table 14.6 – continued from previous page
Index Event
0x2B M Mode Cycles
0x2C S Mode Cycles
0x2D U Mode Cycles
0x2E Exception Number
0x2F Flush Number
0x30 LOAD Instruction
0x31 Fused Instruction
0x32 MULT Instruction
0x33 DIV Instruction
0x34 Mult Inner Forward
0x35 DIV Buffer Hit
0x36 Branch Instruction
0x37 Uncondition Branch
0x38 Branch Mispred
0x39 Uncondition Branch Mispred
0x3A Taken Branch Mispred
0x3B Taken Condition Branch
0x3C Taken Condition Branch Mispred
0x3D Unalign LOAD Instruction
0x3E Unalign STORE Instruction
0x3F LR Instruction
0x40 SC Instruction
0x41 AMO Instruction
0x42 Barrier Instruction
0x43 Failed SC Instruction
0x44 Bus Barrier
0x45 FP DIV Instruction
0x46 FP LOAD Instruction
0x47 FP STORE Instruction
0x48 Vector DIV Instruction
0x49 Vector LOAD Instruction
0x4A Vector STORE Instruction
0x4B Vector Micro Op
0x4C ECC Interrupt
0x4D Async Abort Interrupt
0x4E IF Stall
0x4F IP Stall

Continued on next page

www.t-head.cn 141

Chapter 14. Performance Monitoring Unit

Table 14.6 – continued from previous page
Index Event
0x50 IB Stall
0x51 IF Refill Stall
0x52 IF Mmu Stall
0x53 IB Mispred Stall
0x54 IB Fifo Stall
0x55 IB Ind Btb Rd Stall
0x56 IB Vsetvl Stall
0x57 ID Stall
0x58 RF Stall
0x59 EU Stall
0x5A ID Inst Pipedown
0x5B RF Inst Pipedown
0x5C ID One Inst Pipedown
0x5D ID CSR Before Fence Stall
0x5E ID VSETVL Fof Stall
0x5F ID Flush Stall
0x60 ID Misprediction Stall
0x61 ID IID Not Vld Stall
0x62 RF One Inst Pipedown
0x63 RF RAW Stall
0x64 RF WAW Stall
0x65 RF Structure Stall
0x66 RF CSR After Fence Stall
0x67 EU IU Full
0x68 EU IU Control Full
0x69 EU CP0 Full
0x6A EU LSU LOAD Full
0x6B EU LSU STORE Full
0x6C EU VFPU Full
0x6D EU BJU Full
0x6E IU Dp Stall Pipe0
0x6F IU MULT Stall Pipe0
0x70 IU DIV EX1 Stall Pipe0
0x71 IU Dp Stall Pipe1
0x72 IU MULT Stall Pipe1
0x73 IU DIV EX1 Stall Pipe1
0x74 IU DP Wb Conflict Pipe0

Continued on next page

www.t-head.cn 142

Chapter 14. Performance Monitoring Unit

Table 14.6 – continued from previous page
Index Event
0x75 IU DP WAW Stall Pipe0
0x76 IU DP Uncommit Pipe0
0x77 IU DP Wb Conflict Pipe1
0x78 IU DP WAW Stall Pipe1
0x79 IU DP Uncommit Pipe1
0x7A IU MULT Uncommit
0x7B IU MULT Wb Stall
0x7C IU DIV Uncommit
0x7D IU DIV Wb Stall
0x7E LSU LOAD WAW Stall
0x7F LSU LOAD Commit Stall
0x80 LSU LOAD RAW Stall
0x81 LSU STORE Commit Stall
0x82 Vidu Rf No Pipedown
0x83 VPU Stall Pipe0
0x84 VPU Stall Pipe1
0x85 VPU Struct Hazard Stall Pipe0
0x86 VPU Uncommit Stall Pipe0
0x87 VPU VLSU Stall Pipe0
0x88 VPU Struct Hazard Stall Pipe1
0x89 VPU Uncommit Stall Pipe1
0x8A VPU VLSU Stall Pipe1
0x8B VFPU FDIV/VDIV Busy
0x8C BJU CP0 Stall
0x8D BJU IBUF Stall
0x8E BJU Wb Stall
0x8F BJU Pipedown Stall
0x90 RTU Flush
0x91 RTU IU Not No OP
0x92 RTU BJU Not No OP
0x93 RTU LSU Not No OP
0x94 RTU CP0 Not No OP
0x95 RTU VFPU Not No OP
0x96 RTU Only IU Not No OP
0x97 RTU Only BJU Not No OP
0x98 RTU Only LSU Not No OP
0x99 RTU Only CP0 Not No OP

Continued on next page

www.t-head.cn 143

Chapter 14. Performance Monitoring Unit

Table 14.6 – continued from previous page
Index Event
0x9A RTU Only VFPU Not No OP
0x9B L1 Dcache Access
0x9C L1 Dcache Miss
0x9D L1 Dcache Exclusive Eviction
0x9E Icache Prefetch
0x9F Dcache Amr Active
0xA0 Icache Prefetch Miss
0xA1 Dcache Refill Casued by Prefetch
0xA2 Dcache Hit Caused by Prefetch
0xA3 Store Dtlb Miss
0xA4 Load Dtlb Miss
0xA5 L2 Access
0xA6 L2 Miss
0xA7 Snb Read Create Vld
0xA8 Snb Read Create Stall
0xA9 Snb Write Create Vld
0xAA Snb Write Create Stall
0xAB Iq Full
0xAC Vidu Vec0 Stall
0xAD Vidu Vec1 Stall
0xAE Vidu Vec0 Depend Stall
0xAF Vidu Vec0 Struct Hazard Stall
0xB0 Vidu Vec1 Depend Stall
0xB1 Vidu Vec1 Struct Hazard Stall
0xB2 Vidu Total Cycle
0xB3 Vidu Vec0 Cycle
0xB4 Vidu Vec1 Cycle
>0xB4 Not defined

14.3.7 Event counters

Event counters are divided into three groups: M-mode event counters, U-mode event counters, and S-mode
event counters (extended in C908). For more information, see Table 14.7.

www.t-head.cn 144

Chapter 14. Performance Monitoring Unit

Table 14.7: M-mode event counter list

Name Index Read/Write Initial value Description
MCYCLE 0xB00 MRW 0x0 The cycle counter.
MINSTRET 0xB02 MRW 0x0 The instructions-retired counter.
MHPMCOUNTER3 0xB03 MRW 0x0 A performance-monitoring counter.
MHPMCOUNTER4 0xB04 MRW 0x0 A performance-monitoring counter.
⋯ ⋯ ⋯ ⋯ ⋯

MHPMCOUNTER31 0xB1F MRW 0x0 A performance-monitoring counter.

Table 14.8 lists the U-mode event counters.

Table 14.8: U-mode event counter list

Name Index Read/Write Initial value Description
CYCLE 0xC00 URO 0x0 The cycle counter.
TIME 0xC01 URO 0x0 The timer.
INSTRET 0xC02 URO 0x0 The instructions-retired counter.
HPMCOUNTER3 0xC03 URO 0x0 A performance-monitoring counter.
HPMCOUNTER4 0xC04 URO 0x0 A performance-monitoring counter.
⋯ ⋯ ⋯ ⋯ ⋯

HPMCOUNTER31 0xC1F URO 0x0 A performance-monitoring counter.
CYCLEH 0xC80 URO 0x0 bits[63:32] of cycle counter, RV32 only
TIMEH 0xC81 URO 0x0 bits[63:32] of timer, RV32 only
INSTRETH 0xC82 URO 0x0 bits[63:32] of instructions- retired counter, RV32 only
HPMCOUNTER3H 0xC83 URO 0x0 bits[63:32] of performance- monitoring counter, RV32 only
HPMCOUNTER4H 0xC84 URO 0x0 bits[63:32] of performance- monitoring counter, RV32 only
⋯ ⋯ ⋯ ⋯ ⋯

HPMCOUNTER31H 0xC9F URO 0x0 bits[63:32] of performance- monitoring counter, RV32 only

Table 14.9: S-mode event counter list

Name Index Read/Write Initial value Description
SCYCLE 0x5E0 SRO 0x0 The cycle counter.
SINSTRET 0x5E2 SRO 0x0 The instructions-retired counter.
SHPMCOUNTER3 0x5E3 SRO 0x0 A performance-monitoring counter.
SHPMCOUNTER4 0x5E4 SRO 0x0 A performance-monitoring counter.
⋯ ⋯ ⋯ ⋯ ⋯

SHPMCOUNTER31 0x5FF SRO 0x0 A performance-monitoring counter.

The U-mode CYCLE, INSTRET, and HPMCOUNTERn counters are read-only mappings of the correspond-
ing M-mode event counters. The timer is the read-only mapping of the MTIME register.

www.t-head.cn 145

Chapter 14. Performance Monitoring Unit

The S-mode SCYCLE, SINSTRET, and SHPMCOUNTERn counters are mappings of corresponding M-
mode event counters.

www.t-head.cn 146

CHAPTER 15

Program Examples

This chapter mainly introduces various program examples, including MMU setting, PMP setting, cache
setting, synchronization primitive, PLIC setting and PMU setting examples.

15.1 Optimal performance configuration for CPU

Using the following configuration can achieve the optimal performance of C908.

• MHCR = 0x11ff

• MHINT = 0x6e30c

• MCCR2 = 0xe0000009 (note: MCCR2 contains settings for RAM delay. In this example, all delays
are set to 0. You need to set appropriate RAM delay according to the actual situation.)

• MXSTATUS = 0x638000

• MSMPR = 0x1

mhcr
li x3, 0x11ff
csrs mhcr,x3

#mhint
li x3, 0x6e30c
csrs mhint,x3

(continues on next page)

147

Chapter 15. Program Examples

(continued from previous page)

mxstatus
li x3, 0x638000
csrs mxstatus,x3

msmpr
csrsi msmpr,0x1

mccr2
li x3, 0xe0000009
csrs mccr2,x3

15.2 MMU setting examples

/**

* Function: An example of setting C908MP MMU.
* Memory space: Virtual address <-> physical address.
*
* Pagesize 4K：vpn: {vpn2,vpn1,vpn0} <-> ppn: {ppn2,ppn1,ppn0}
* Pagesize 2M：vpn: {vpn2,vpn1} <-> ppn:{ppn2,ppn1}
* Pagesize 1G：vpn: {vnp2} <-> ppn: {ppn2}
*
**/

/*C908 will invalidate all MMU TLB entries automatically when reset*/
/*You can use sfence.vma to invalid all MMU TLB entries if necessary*/
sfence.vma x0, x0

/* Pagesize 4K：vpn: {vpn2, vpn1, vpn0} <-> ppn: {ppn2, ppn1, ppn0}*/
/* First-level page addr base：PPN (defined in satp)*/
/* Second-level page addr base：BASE2 (self define)*/
/* Third-level page addr base：BASE3 (self define)*/
/* 1. Get first-level page addr base: PPN and vpn*/
/* Get PPN*/
csrr x3, satp
li x4, 0xfffffffffff
and x3, x3, x4

(continues on next page)

www.t-head.cn 148

Chapter 15. Program Examples

(continued from previous page)

/*2. Config first-level page*/
/*First-level page addr: {PPN, vpn2, 3’b0}, first-level page pte:{ 44’b BASE2, 10’b1}

↪→ */
/*Get first-level page addr*/
slli x3, x3, 12
/*Get vpn2*/
li x4, VPN
li x5, 0x7fc0000
and x4, x4, x5
srli x4, x4, 15
and x5, x3, x4
/*Store pte at first-level page addr*/
li x6, {44’b BASE2, 10’b1}
sd x6, 0(x5)

/*3. Config second-level page*/
/*Second-level page addr: {BASE2, vpn1, 3’b0}, second-level page pte:{ 44’b BASE3, 10’

b1} */
/*Get second-level page addr*/
/* VPN1*/
li x4, VPN
li x5, 0x3fe00
and x4, x4, x5
srli x4, x4, 9
/*BASE2*/
li x5, BASE2
srli x5, x5, 12
and x5, x5, x4
/*Store pte at second-level page addr*
li x6, {44’b BASE3, 10’b1}
sd x6, 0(x5)
/*4. Config third-level page*/
/*Third-level page addr: {BASE3, vpn0, 3’b0}, third-level page pte:{
theadflag, ppn2, ppn1, ppn0, 9’b flags,1’b1} */
/*Get second-level page addr*/
/* VPN0*/
li x4, VPN
li x5, 0x1ff
and x4, x4, x5

(continues on next page)

www.t-head.cn 149

Chapter 15. Program Examples

(continued from previous page)

srli x4, x4, 3
/*BASE3*/
li x5, BASE3
srli x5, x5, 12
and x5, x5, x4
/*Store pte at second-level page addr*/
li x6, { theadflag, ppn2, ppn1, ppn0, 9’b flags, 1’b1}
sd x6, 0(x5)

/* Pagesize 2M：vpn: {vpn2, vpn1} <-> ppn: {ppn2, ppn1}*/
/*First-level page addr base：PPN (defined in satp)*/
/*Second-level page addr base：BASE2 (self define)*/

/*1. Get first-level page addr base: PPN and vpn*/
/* Get PPN*/
csrr x3, satp
li x4, 0xfffffffffff
and x3, x3, x4

/*2. Config first-level page*/
/*First-level page addr: {PPN, vpn2, 3’b0}, first-level page pte:{ 44’b
BASE2, 10’b1}*/
/*Get first-level page addr*/
slli x3, x3, 12
/*Get vpn2*/
li x4, VPN
li x5, 0x7fc0000
and x4, x4, x5
srli x4, x4, 15
and x5, x3, x4
/*Store pte at first-level page addr*/
li x6, {44’b BASE2, 10’b1}
sd x6, 0(x5)

/*3. Config second-level page*/
/*Second-level page addr: {BASE2, vpn1, 3’b0}, second-level page pte:{
theadflag, ppn2, ppn1, 9’b0, 9’b flags,1’b1} */
/*Get second-level page addr*/
/*VPN1*/

(continues on next page)

www.t-head.cn 150

Chapter 15. Program Examples

(continued from previous page)

li x4, VPN
li x5, 0x3fe00
and x4, x4, x5
srli x4, x4, 9
/*BASE2*/
li x5, BASE2
srli x5, x5, 12
and x5, x5, x4
/*Store pte at second-level page addr*/
li x6, { theadflag, ppn2, ppn1, 9’b0, 9’b flags,1’b1}
sd x6, 0(x5)

/* Pagesize 1G：vpn: {vpn2} <-> ppn: {ppn2}*/
/*First-level page addr base：PPN (defined in satp)*/
/*1. Get first-level page addr base: PPN and vpn*/
/* Get PPN*/
csrr x3, satp
li x4, 0xfffffffffff
and x3, x3, x4

/*2. Config first-level page*/
/*First-level page addr: {PPN, vpn2, 3’b0}, first-level page pte:{
theadflag, ppn2, 9’b0, 9’b0, 9’b flags,1’b1}*/
/*Get first-level page addr*/
slli x3, x3, 12
/*Get vpn2*/
li x4, VPN
li x5, 0x7fc0000
and x4, x4, x5
srli x4, x4, 15
and x5, x3, x4
/*Store pte at first-level page addr*/
li x6, { theadflag, ppn2, 9’b0, 9’b0, 9’b flags,1’b1}
sd x6, 0(x5)

www.t-head.cn 151

Chapter 15. Program Examples

15.3 PMP setting examples

/
↪→***
* Function: An example of setting C908MP PMP.
* 0x0 ~ 0xf0000000, TOR 模式，RWX
* 0xf0000000 ~ 0xf8000000, NAPOT 模式，RW
* 0xfff73000 ~ 0xfff74000, NAPOT 模式，RW
* 0xfffc0000 ~ 0xfffc2000, NAPOT 模式，RW
* The four regions above are configured with different execution permissions.In addition,
↪→ PMP needs to be configured to prevent the CPU from speculating into unsupported␣
↪→address regions in different modes, especially in the M-mode with all execution␣
↪→permissions by default.
Specifically, after configuring the address regions that require execution permissions,␣
↪→the remaining address regions should be configured with no permissions as shown in the␣
↪→following example.
***/
↪→

pmpaddr0,0x0 ~ 0xf0000000, TOR mode, read/write/executable permission
li x3, (0xf0000000 >> 2)
csrw pmpaddr0, x3

pmpaddr1,0xf0000000 ~ 0xf8000000, NAPOT mode, read/write permission
li x3, (0xf0000000 >> 2 | (0x8000000-1) >> 3)
csrw pmpaddr1, x3

pmpaddr2,0xfff73000 ~ 0xfff74000, NAPOT mode, read/write permission
li x3, (0xfff73000 >> 2 | (0x1000-1) >> 3)
csrw pmpaddr2, x3

pmpaddr3,0xfffc0000 ~ 0xfffc2000, NAPOT mode, read/write permission
li x3, (0xfffc0000 >> 2 | (0x2000-1) >> 3)
csrw pmpaddr3, x3

(continues on next page)

www.t-head.cn 152

Chapter 15. Program Examples

(continued from previous page)

pmpaddr4,0xf0000000 ~ 0x100000000, NAPOT mode, no permission
li x3, (0xf0000000 >> 2 | (0x10000000-1) >> 3)
csrw pmpaddr4, x3

pmpaddr5,0x100000000 ~ 0xffffffffff, TOR NAPOT mode, no permission
li x3, (0xffffffffff >> 2)
csrw pmpaddr5, x3

PMPCFG0, configure execution permissions/mode/lock bit of PMPCFG register for each␣
↪→PMP entries. When lock = 1, this entry is in M-mode.
li x3,0x88989b9b9b8f
csrw pmpcfg0, x3

pmpaddr5,0x100000000 ~ 0xffffffffff, TOR mode. When 0x100000000 <= addr <␣
↪→0xffffffffff, pmpaddr5 will be hit. But address space 0xfffffff000 ~ 0xffffffffffcan␣
↪→not hit pmpaddr5(The PMP unit of C908 supports the minimum granularity of 4 KB). If␣
↪→you need to mask the last 4KB space of the 1TB space, another NAPOT mode page entry␣
↪→needs to be configured.

15.4 Cache setting example

15.4.1 Example of enabling Cache

/*C908 will invalidate all I-cache automatically when reset*/
/*You can invalidate I-cache by yourself if necessary*/
/*Invalidate I-cache*/
li x3, 0x33
csrc mcor, x3
li x3, 0x11
csrs mcor, x3
// You can also use icache instrucitons to replace the invalidate sequence
// if theadisaee is enabled.
//icache.iall
//sync.is

/*Enable I-cache*/
li x3, 0x1
csrs mhcr, x3

(continues on next page)

www.t-head.cn 153

Chapter 15. Program Examples

(continued from previous page)

/*C908 will invalidate all D-cache automatically when reset*/
/*You can invalidate D-cache by yourself if necessary*/
/*Invalidate D-cache*/
li x3, 0x33
csrc mcor, x3
li x3, 0x12
csrs mcor, x3

// You can also use dcache instrucitons to replace the invalidate sequence
// if theadisaee is enabled.
// dcache.iall
// sync.is

/*Enable D-cache*/
li x3, 0x2
csrs mhcr, x3

15.4.2 Example of synchronization between I-Cache and D-Cache

CPU0

sd x3,0(x4) // a new instruction defined in x3
// is stored to program memory address defined in x4.

dcache.cval1 r0 // clean the new instrcution to the shared L2 cache.
sync.s // ensure completion of clean operation.

// the dcache clean is not necessarily if INSDE is not enabled.
icache.iva r0 // invalid icache according to shareable configuraiton.
sync.s/fence.i // ensure completion in all CPUs.
sd x5,0(x6) // set flag to signal operation completion.
sync.is
jr x4 // jmp to new code

CPU1~CPU3

WAIT_FINISH:
ld x7,0(x6)
bne x7,x5, WAIT_FINISH // wait CPU0 modification finish.
sync.is
jr x4 // jmp to new code

www.t-head.cn 154

Chapter 15. Program Examples

15.4.3 Example of synchronization between TLB and D-Cache

CPU0

sd x4,0(x3) // update a new translation table entry
sync.is/fence.i // ensure completion of update operation.
sfence.vma x5,x0 // invalid the TLB by va
sync.is/fence.i // ensure completion of TLB invalidation and

// synchronises context

15.4.4 Setting of L2 cache partition function

1. Set MCCR2.PAE = 1 to enable partition function.

2. Configure the ML2WP register and set which group each ID is allowed to be placed in. This register
is shared by all cores.

For example, pid0 is only allowed to placed in group0, pid1 is only allowed to place in group1:

ML2WP[63:56]=8’h80

ML2WP[55:48]=8’h40

⋯

ML2WP[7:0]=8’h01

It should be noted that at least one group must be enabled for each id, otherwise the register
will show that this id can enabled each group after assignment.

3. Configure the ML2PID register. Each core has one ML2PID, which indicating the PID of the current
core. A simple way to configure it is:

core0, ML2PID[2:0]=0

core1, ML2PID[2:0]=1

and so on.

Finally, you can decide whether to enable SL2WP and SL2PID by configuring MXSTATUS[9] (SPCE bit).

15.5 Synchronization primitive setting example

CPU0

li x1, 0x1
li x6, 0x0

(continues on next page)

www.t-head.cn 155

Chapter 15. Program Examples

(continued from previous page)

ACQUIRE_LOCK: // (x3) is the lock address. 0: Free; 1: Busy.
lr x4, 0(x3) // Read lock
bnez x4, ACQUIRE_LOCK // Try again if the lock is in use
sc x5, x1, 0(x3) // Attempt to store new value
bne x6, x5, ACQUIRE_LOCK // Try again if fail
sync.s

... // Critical section code

CPU1

sync.s/fence.i // Ensure all operations are observed before clearing the lock.
sd x0, 0(x3) // Clear the lock.

15.6 PLIC setting example

//Init id 1 machine mode int for hart 0
/*1.set hart threshold if needed*/
li x3, (plic_base_addr + 0x200000) // h0 mthreshold addr
li x4, 0xa //threshold value
sw x4,0x0(x3) // set hart0 threshold as 0xa

/*2.set priority for int id 1*/
li x3, (plic_base_addr + 0x0) // int id 1 prio addr
li x4, 0x1f // prio value
sw x4,0x4(x3) // init id1 priority as 0x1f

/*3.enable m-mode int id1 to hart*/
li x3, (plic_base_addr + 0x2000) // h0 mie0 addr
li x4, 0x2
sw x4,0x0(x3) // enable int id1 to hart0

/*4.set ip or wait external int*/
/*following code set ip*/
li x3, (plic_base_addr + 0x1000) // h0 mthreshold addr
li x4, 0x2 // id 1 pending
sw x4, 0x0(x3) // set int id1 pending

(continues on next page)

www.t-head.cn 156

Chapter 15. Program Examples

(continued from previous page)

/*5.core enters interrupt handler, read PLIC_CLAIM and get ID*/

/*6.core takes interrupt*/

/*7.core needs to clear external interrupt source if LEVEL(not PULSE)
configured, then core writes ID to PLIC_CLAIM and exits interrupt*/

15.7 PMU setting example

/*1.inhibit counters counting*/
li x3, 0xffffffff
csrw mcountinhibit, x3

/*2.C908 will initial all pmu counters when reset*/
/*you can initial pmu counters manually if necessarily*/
csrw mcycle, x0
csrw minstret, x0
csrw mhpmcounter3, x0
⋯⋯
csrw mhpmcounter31, x0

/*3.configure mhpmevent*/
li x3, 0x1
csrw mhpmevent3, x3 // mhpmcounter3 count event: L1 ICache Access Counter
li x3, 0x2
csrw mhpmevent4, x3 // mhpmcounter4 count event: L1 ICache Miss Counter
⋯⋯
li x3, 0x13
csrw mhpmevent21, x3 // mhpmcounter21 count event: L2 Cache write miss Counter

/*4. configure mcounteren and scounteren*/
li x3, 0xffffffff
csrw mcounteren, x3 // enable super mode to read hpmcounter
li x3, 0xffffffff
csrw scounteren, x3 // enable user mode to read hpmcounter

/*5. enable counters to count when you want*/
csrw mcountinhibit, x0

www.t-head.cn 157

CHAPTER 16

Appendix A Standard Instructions

C908 implements the RV64IMAFCB[V] instruction set architecture. The instructions are described in the
following sections by instruction set.

16.1 Appendix A-1 I instructions

The following describes the RISC-V I instructions implemented by C908. The instructions are sorted in
alphabetic order.

The instructions are 32 bits wide by default. However, in specific cases, the system assembles some instruc-
tions into 16-bit compressed instructions. For more information about compressed instructions, see Appendix
A-6 C Instructions.

16.1.1 ADD: a signed add instruction

Syntax:

add rd, rs1, rs2

Operation:

rd ← rs1 + rs2

Permission:

Machine mode (M-mode)/Supervisor mode (S-mode)/User mode (U-mode)

158

Chapter 16. Appendix A Standard Instructions

Exception:

None

Instruction format:

16.1.2 ADDI: a signed add immediate instruction

Syntax:

addi rd, rs1, imm12

Operation:

rd ← rs1 + sign_extend(imm12)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.3 ADDIW: a signed add immediate instruction that operates on the lower 32 bits

Syntax:

addiw rd, rs1, imm12

Operation:

tmp[31:0] ← rs1[31:0] + sign_extend(imm12)[31:0]

rd ← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

www.t-head.cn 159

Chapter 16. Appendix A Standard Instructions

16.1.4 ADDW: a signed add instruction that operates on the lower 32 bits

Syntax:

addw rd, rs1, rs2

Operation:

tmp[31:0] ← rs1[31:0] + rs2[31:0]

rd ← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.5 AND: a bitwise AND instruction

Syntax:

and rd, rs1, rs2

Operation:

rd ← rs1 & rs2

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

www.t-head.cn 160

Chapter 16. Appendix A Standard Instructions

16.1.6 ANDI: an immediate bitwise AND instruction

Syntax:

andi rd, rs1, imm12

Operation:

rd ← rs1 & sign_extend(imm12)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.7 AUIPC: an instruction that adds the immediate in the upper bits to the PC

Syntax:

auipc rd, imm20

Operation:

rd ← current pc + sign_extend(imm20<<12)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.8 BEQ: a branch-if-equal instruction

Syntax:

beq rs1, rs2, label

Operation:

www.t-head.cn 161

Chapter 16. Appendix A Standard Instructions

if (rs1 == rs2)

next pc = current pc +sign_extend(imm12<<1)

else

next pc = current pc + 4

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

The compiler calculates immediate 12 based on the label.

The jump range of the instruction is ±4 KB address space.

Instruction format:

16.1.9 BGE: a signed branch-if-greater-than-or-equal instruction

Syntax:

bge rs1, rs2, label

Operation:

if (rs1 >= rs2)

next pc = current pc + sign_extend(imm12 <<1)

else

next pc = current pc + 4

Permission:

M mode/S mode/U mode

www.t-head.cn 162

Chapter 16. Appendix A Standard Instructions

Exception:

None

Notes:

The compiler calculates immediate 12 based on the label.

The jump range of the instruction is ±4 KB address space.

Instruction format:

16.1.10 BGEU: an unsigned branch-if-greater-than-or-equal instruction

Syntax:

bgeu rs1, rs2, label

Operation:

if (rs1 >= rs2)

next pc = current pc + sign_extend(imm12<<1)

else

next pc = current pc + 4

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

The compiler calculates immediate 12 based on the label.

The jump range of the instruction is ±4 KB address space.

Instruction format:

www.t-head.cn 163

Chapter 16. Appendix A Standard Instructions

16.1.11 BLT: a signed branch-if-less-than instruction

Syntax:

blt rs1, rs2, label

Operation:

if (rs1 < rs2)

next pc = current pc + sign_extend(imm12<<1)

else

next pc = current pc + 4

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

The compiler calculates immediate 12 based on the label.

The jump range of the instruction is ±4 KB address space.

Instruction format:

16.1.12 BLTU: an unsigned branch-if-less-than instruction

Syntax:

bltu rs1, rs2, label

Operation:

if (rs1 < rs2)

next pc = current pc + sign_extend(imm12<<1)

else

next pc = current pc + 4

Permission:

M mode/S mode/U mode

www.t-head.cn 164

Chapter 16. Appendix A Standard Instructions

Exception:

None

Notes:

The compiler calculates immediate 12 based on the label.

The jump range of the instruction is ±4 KB address space.

Instruction format:

16.1.13 BNE: a branch-if-not-equal instruction

Syntax:

bne rs1, rs2, label

Operation:

if (rs1 != rs2)

next pc = current pc + sign_extend(imm12<<1)

else

next pc = current pc + 4

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

The compiler calculates immediate 12 based on the label.

The jump range of the instruction is ±4 KB address space.

Instruction format:

www.t-head.cn 165

Chapter 16. Appendix A Standard Instructions

16.1.14 CSRRC: a move instruction that clears control registers

Syntax:

csrrc rd, csr, rs1

Operation:

rd ← csr

csr ← csr & (~rs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

Accessible control registers vary under different privileges. For more information, see the descriptions of
control registers.

When rs1 = x0, this instruction does not initiate write operations and therefore does not cause write-related
exceptions.

Instruction format:

16.1.15 CSRRCI: a move instruction that clears immediates in control registers

Syntax:

csrrci rd, csr, imm5

Operation:

rd ← csr

csr ← csr & ~zero_extend(imm5)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

www.t-head.cn 166

Chapter 16. Appendix A Standard Instructions

Accessible control registers vary under different privileges. For more information, see the descriptions of
control registers.

When rs1 = x0, this instruction does not initiate write operations and therefore does not cause write-related
exceptions.

Instruction format:

16.1.16 CSRRS: a move instruction for setting control registers

Syntax:

csrrs rd, csr, rs1

Operation:

rd ← csr

csr ← csr | rs1

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

Accessible control registers vary under different privileges. For more information, see the descriptions of
control registers.

When rs1 = x0, this instruction does not initiate write operations and therefore does not cause write-related
exceptions.

Instruction format:

16.1.17 CSRRSI: a move instruction for setting immediates in control registers

Syntax:

csrrsi rd, csr, imm5

Operation:

www.t-head.cn 167

Chapter 16. Appendix A Standard Instructions

rd ← csr

csr ← csr | zero_extend(imm5)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

Accessible control registers vary under different privileges. For more information, see the descriptions of
control registers.

When rs1 = x0, this instruction does not initiate write operations and therefore does not cause write-related
exceptions.

Instruction format:

16.1.18 CSRRW: a move instruction that reads/writes control registers

Syntax:

csrrw rd, csr, rs1

Operation:

rd ← csr

csr ← rs1

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

Accessible control registers vary under different privileges. For more information, see the descriptions of
control registers.

When rs1 = x0, this instruction does not initiate write operations and therefore does not cause write-related
exceptions.

Instruction format:

www.t-head.cn 168

Chapter 16. Appendix A Standard Instructions

16.1.19 CSRRWI: a move instruction that reads/writes immediates in control registers

Syntax:

csrrwi rd, csr, imm5

Operation:

rd ← csr

csr[4:0] ← imm5

csr[63:5] ← csr[63:5]

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

Accessible control registers vary under different privileges. For more information, see the descriptions of
control registers.

When rs1 = x0, this instruction does not initiate write operations and therefore does not cause write-related
exceptions.

Instruction format:

16.1.20 EBREAK: a breakpoint instruction

Syntax:

ebreak

Operation:

Generates breakpoint exceptions or enables the core to enter the debug mode.

Permission:

M mode/S mode/U mode

www.t-head.cn 169

Chapter 16. Appendix A Standard Instructions

Exception:

Breakpoint exceptions

Instruction format:

16.1.21 ECALL: an environment call instruction

Syntax:

ecall

Operation:

Generates environment call exceptions.

Permission:

M mode/S mode/U mode

Exception:

U-mode, S-mode, and M-mode environment call exceptions

Instruction format:

16.1.22 FENCE: a memory synchronization instruction

Syntax:

fence iorw, iorw

Operation:

Ensures that all memory or device read/write instructions before this instruction are observed earlier than
those after this instruction.

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the PI and SO bits are both 1, the instruction syntax is fence i,o, and so on.

www.t-head.cn 170

Chapter 16. Appendix A Standard Instructions

Instruction format:

16.1.23 FENCE.I: an instruction stream synchronization instruction

Syntax:

fence.i

Operation:

Clears the I-Cache to ensure that the data access results before this instruction can be accessed by fetch
operations after the instruction.

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.24 JAL: an instruction for directly jumping to a subroutine

Syntax:

jal rd, label

Operation:

next pc ← current pc + sign_extend(imm20<<1)

rd ← current pc + 4

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

The compiler calculates immediate 20 based on the label.

The jump range of the instruction is ±1 MB address space.

www.t-head.cn 171

Chapter 16. Appendix A Standard Instructions

Instruction format:

16.1.25 JALR: an instruction for jumping to a subroutine by using an address in a
register

Syntax:

jalr rd, rs1, imm12

Operation:

next pc ← (rs1 + sign_extend(imm12)) & 64’hfffffffffffffffe

rd ← current pc + 4

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the CPU runs in M-mode or the MMU is disabled, the jump range of the instruction is the entire 1
TB address space.

When the CPU does not run in M-mode and the MMU is enabled, the jump range of the instruction is the
entire 512 GB address space.

Instruction format:

16.1.26 LB: a sign-extended byte load instruction

Syntax:

lb rd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

rd ← sign_extend(mem[address])

www.t-head.cn 172

Chapter 16. Appendix A Standard Instructions

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

16.1.27 LBU: an unsign-extended byte load instruction

Syntax:

lbu rd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

rd ← zero_extend(mem[address])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

16.1.28 LD: a doubleword load instruction

Syntax:

ld rd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

rd ← mem[(address+7):address]

Permission:

M mode/S mode/U mode

www.t-head.cn 173

Chapter 16. Appendix A Standard Instructions

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

16.1.29 LH: a sign-extended halfword load instruction

Syntax:

lh rd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

rd ← sign_extend(mem[(address+1):address])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

16.1.30 LHU: an unsign-extended halfword load instruction

Syntax:

lhu rd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

rd ← zero_extend(mem[(address+1):address])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

www.t-head.cn 174

Chapter 16. Appendix A Standard Instructions

16.1.31 LUI: an instruction for loading the immediate in the upper bits

Syntax:

lui rd, imm20

Operation:

rd←sign_extend(imm20<<12)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.32 LW: a sign-extended word load instruction

Syntax:

lw rd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

rd ← sign_extend(mem[(address+3):address])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

www.t-head.cn 175

Chapter 16. Appendix A Standard Instructions

16.1.33 LWU: an unsign-extended word load instruction

Syntax:

lwu rd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

rd ← zero_extend(mem[(address+3):address])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

16.1.34 MRET: an instruction for returning from exceptions in M-mode

Syntax:

mret

Operation:

next pc← mepc

mstatus.mie ←mstatus.mpie

mstatus.mpie ←1

Permission:

M mode

Exception:

Illegal instruction.

Instruction format:

www.t-head.cn 176

Chapter 16. Appendix A Standard Instructions

16.1.35 OR: a bitwise OR instruction

Syntax:

or rd, rs1, rs2

Operation:

rd ← rs1 | rs2

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.36 ORI: an immediate bitwise OR instruction

Syntax:

ori rd, rs1, imm12

Operation:

rd ← rs1 | sign_extend(imm12)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.37 SB: a byte store instruction

Syntax:

sb rs2, imm12(rs1)

Operation:

www.t-head.cn 177

Chapter 16. Appendix A Standard Instructions

address←rs1+sign_extend(imm12)

mem[:address] ← rs2[7:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Instruction format:

16.1.38 SD: a doubleword store instruction

Syntax:

sd rs2, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

mem[(address+7):address] ← rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Instruction format:

16.1.39 SFENCE.VMA: a virtual memory synchronization instruction

Syntax:

sfence.vma rs1,rs2

Operation:

Invalidates and synchronizes virtual memory.

Permission:

M mode/S mode

www.t-head.cn 178

Chapter 16. Appendix A Standard Instructions

Exception:

Illegal instruction.

Notes:

When the TVM bit in the mstatus is 1, running this instruction in S-mode will trigger an illegal instruction
exception.

rs1 is the virtual address, and rs2 is the address space identifier (ASID).

• When rs1 and rs2 are both x0, all TLB entries are invalidated.

• When rs1! and rs2 are both x0, all TLB entries that hit the virtual address specified by rs1 are
invalidated.

• When rs1 and rs2! are both x0, all TLB entries that hit the process ID specified by rs2 are invalidated.

• When rs1! and rs2! are both x0, all TLB entries that hit the virtual address specified by rs1 and the
process ID specified by rs2 are invalidated.

Instruction format:

16.1.40 SH: a halfword store instruction

Syntax:

sh rs2, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

mem[(address+1):address] ← rs2[15:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Instruction format:

www.t-head.cn 179

Chapter 16. Appendix A Standard Instructions

16.1.41 SLL: a logical left shift instruction

Syntax:

sll rd, rs1, rs2

Operation:

rd← rs1 << rs2[5:0]

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.42 SLLI: an immediate logical left shift instruction

Syntax:

slli rd, rs1, shamt6

Operation:

rd← rs1 << shamt6

Permission:

M mode/S mode/U mode

Exception:

www.t-head.cn 180

Chapter 16. Appendix A Standard Instructions

None

Instruction format:

16.1.43 SLLIW: an immediate logical left shift instruction that operates on the lower
32 bits

Syntax:

slliw rd, rs1, shamt5

Operation:

tmp[31:0]←(rs1[31:0] << shamt5)[31:0]

rd← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.44 SLLW: a logical left shift instruction that operates on the lower 32 bits

Syntax:

sllw rd, rs1, rs2

Operation:

tmp[31:0]← (rs1[31:0] << rs2[4:0])[31:0]

rd←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

www.t-head.cn 181

Chapter 16. Appendix A Standard Instructions

16.1.45 SLT: a signed set-if-less-than instruction

Syntax:

slt rd, rs1, rs2

Operation:

if (rs1 < rs2)

rd←1

else

rd←0

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.46 SLTI: a signed set-if-less-than-immediate instruction

Syntax:

slti rd, rs1, imm12

Operation:

if (rs1 <sign_extend(imm12))

rd←1

else

rd←0

Permission:

M mode/S mode/U mode

www.t-head.cn 182

Chapter 16. Appendix A Standard Instructions

Exception:

None

Instruction format:

16.1.47 SLTIU: an unsigned set-if-less-than-immediate instruction

Syntax:

sltiu rd, rs1, imm12

Operation:

if (rs1 <zero_extend(imm12))

rd←1

else

rd←0

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.48 SLTU: an unsigned set-if-less-than instruction

Syntax:

sltu rd, rs1, rs2

Operation:

if (rs1 < rs2)

rd←1

else

rd←0

Permission:

www.t-head.cn 183

Chapter 16. Appendix A Standard Instructions

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.49 SRA: an arithmetic right shift instruction

Syntax:

sra rd, rs1, rs2

Operation:

rd←rs1 >>> rs2[5:0]

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.50 SRAI: an immediate arithmetic right shift instruction

Syntax:

srai rd, rs1, shamt6

Operation:

rd← rs1 >>>shamt6

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

www.t-head.cn 184

Chapter 16. Appendix A Standard Instructions

16.1.51 SLLIW: an immediate arithmetic right shift instruction that operates on the
lower 32 bits

Syntax:

sraiw rd, rs1, shamt5

Operation:

tmp[31:0]←(rs1[31:0] >>> shamt5)[31:0]

rd← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.52 SRAW: an arithmetic right shift instruction that operates on the lower 32 bits

Syntax:

sraw rd, rs1, rs2

Operation:

tmp←(rs1[31:0] >>> rs2[4:0])[31:0]

rd←sign_extend(tmp)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

www.t-head.cn 185

Chapter 16. Appendix A Standard Instructions

16.1.53 SRET: an instruction for returning from exceptions in S-mode

Syntax:

sret

Operation:

next pc← sepc

sstatus.sie ←sstatus.spie

sstatus.spie ←1

Permission:

S mode

Exception:

Illegal instruction.

Instruction format:

16.1.54 SRL: a logical right shift instruction

Syntax:

srl rd, rs1, rs2

Operation:

rd←rs1 >> rs2[5:0]

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.55 SRLI: an immediate logical right shift instruction

Syntax:

srli rd, rs1, shamt6

www.t-head.cn 186

Chapter 16. Appendix A Standard Instructions

Operation:

rd← rs1 >> shamt6

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.56 SRLIW: an immediate logical right shift instruction that operates on the lower
32 bits

Syntax:

srliw rd, rs1, shamt5

Operation:

tmp[31:0]←(rs1[31:0] >> shamt5)[31:0]

rd← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.57 SRLW: a logical right shift instruction that operates on the lower 32 bits

Syntax:

srlw rd, rs1, rs2

Operation:

tmp←(rs1[31:0] >> rs2[4:0])[31:0]

rd←sign_extend(tmp)

www.t-head.cn 187

Chapter 16. Appendix A Standard Instructions

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.58 SUB: a signed subtract instruction

Syntax:

sub rd, rs1, rs2

Operation:

rd ← rs1 - rs2

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.59 SUBW: a signed subtract instruction that operates on the lower 32 bits

Syntax:

subw rd, rs1, rs2

Operation:

tmp[31:0] ← rs1[31:0] - rs2[31:0]

rd ← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

www.t-head.cn 188

Chapter 16. Appendix A Standard Instructions

Instruction format:

16.1.60 SW: a word store instruction

Syntax:

sw rs2, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

mem[(address+3):address] ← rs2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Instruction format:

16.1.61 WFI: an instruction for entering the low power mode

Syntax:

wfi

Operation:

Triggers the CPU to enter the low power mode. In this mode, the CPU clock and most device clocks are
disabled.

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

www.t-head.cn 189

Chapter 16. Appendix A Standard Instructions

16.1.62 XOR: a bitwise XOR instruction

Syntax:

xor rd, rs1, rs2

Operation:

rd ← rs1 ^ rs2

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.1.63 XORI: an immediate bitwise XOR instruction

Syntax:

xori rd, rs1, imm12

Operation:

rd ← rs1 & sign_extend(imm12)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.2 Appendix A-2 M instructions

The following describes the RISC-V M instructions implemented by C908. The instructions are 32 bits wide
and sorted in alphabetic order.

www.t-head.cn 190

Chapter 16. Appendix A Standard Instructions

16.2.1 DIV: a signed divide instruction

Syntax:

div rd, rs1, rs2

Operation:

rd ← rs1 / rs2

Permission:

Machine mode (M-mode)/Supervisor mode (S-mode)/User mode (U-mode)

Exception:

None

Notes:

When the divisor is 0, the division result is 0xffffffffffffffff.

When overflow occurs, the division result is 0x8000000000000000.

Instruction format:

16.2.2 DIVU: an unsigned divide instruction

Syntax:

divu rd, rs1, rs2

Operation:

rd ← rs1 / rs2

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the divisor is 0, the division result is 0xffffffffffffffff.

Instruction format:

www.t-head.cn 191

Chapter 16. Appendix A Standard Instructions

16.2.3 DIVUW: an unsigned divide instruction that operates on the lower 32 bits

Syntax:

divuw rd, rs1, rs2

Operation:

tmp[31:0] ← (rs1[31:0] / rs2[31:0])[31:0]

rd←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the divisor is 0, the division result is 0xffffffffffffffff.

Instruction format:

16.2.4 DIVW: a signed divide instruction that operates on the lower 32 bits

Syntax:

divw rd, rs1, rs2

Operation:

tmp[31:0] ← (rs1[31:0] / rs2[31:0])[31:0]

rd←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the divisor is 0, the division result is 0xffffffffffffffff.

When overflow occurs, the division result is 0xffffffff80000000.

Instruction format:

www.t-head.cn 192

Chapter 16. Appendix A Standard Instructions

16.2.5 MUL: a signed multiply instruction

Syntax:

mul rd, rs1, rs2

Operation:

rd ← (rs1 * rs2)[63:0]

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.2.6 MULH: a signed multiply instruction that extracts the upper bits

Syntax:

mulh rd, rs1, rs2

Operation:

rd ← (rs1 * rs2)[127:64]

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.2.7 MULHSU: a signed-unsigned multiply instruction that extracts the upper bits

Syntax:

www.t-head.cn 193

Chapter 16. Appendix A Standard Instructions

mulusu rd, rs1, rs2

Operation:

rd ← (rs1 * rs2)[127:64]

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 indicates a signed number, and rs2 indicates an unsigned number.

Instruction format:

16.2.8 MULHU: an unsigned multiply instruction that extracts the upper bits

Syntax:

mulhu rd, rs1, rs2

Operation:

rd ← (rs1 * rs2)[127:64]

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.2.9 MULW: a signed multiply instruction that operates on the lower 32 bits

Syntax:

mulw rd, rs1, rs2

Operation:

www.t-head.cn 194

Chapter 16. Appendix A Standard Instructions

tmp ← (rs1[31:0] * rs2[31:0])[31:0]

rd ← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.2.10 REM: a signed remainder instruction

Syntax:

rem rd, rs1, rs2

Operation:

rd ← rs1 % rs2

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the divisor is 0, the remainder operation result is the dividend.

When overflow occurs, the remainder operation result is 0x0.

Instruction format:

16.2.11 REMU: an unsigned remainder instruction

Syntax:

remu rd, rs1, rs2

Operation:

rd ← rs1 % rs2

www.t-head.cn 195

Chapter 16. Appendix A Standard Instructions

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the divisor is 0, the remainder operation result is the dividend.

Instruction format:

16.2.12 REMUW: an unsigned remainder instruction that operates on the lower 32
bits

Syntax:

remw rd, rs1, rs2

Operation:

tmp ← (rs1[31:0] % rs2[31:0])[31:0]

rd ← sign_extend(tmp)

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the divisor is 0, the remainder operation result is obtained by extending the signed bit [31] of the
dividend.

Instruction format:

16.2.13 REMW: a signed remainder instruction that operates on the lower 32 bits

Syntax:

remw rd, rs1, rs2

www.t-head.cn 196

Chapter 16. Appendix A Standard Instructions

Operation:

tmp[31:0] ← (rs1[31:0] % rs2[31:0])[31:0]

rd ← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

When the divisor is 0, the remainder operation result is obtained by extending the signed bit [31] of the
dividend.

When overflow occurs, the remainder operation result is 0x0.

Instruction format:

16.3 Appendix A-3 A instructions

The following describes the RISC-V A instructions implemented by C908. The instructions are 32 bits wide
and sorted in alphabetic order.

16.3.1 AMOADD.D: an atomic add instruction

Syntax:

amoadd.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← mem[rs1+7:rs1] + rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

www.t-head.cn 197

Chapter 16. Appendix A Standard Instructions

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoadd.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoadd.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoadd.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoadd.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

16.3.2 AMOADD.W: an atomic add instruction that operates on the lower 32 bits

Syntax:

amoadd.w.aqrl rd, rs2, (rs1)

Operation:

rd ←sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1]← mem[rs1+3:rs1] + rs2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

www.t-head.cn 198

Chapter 16. Appendix A Standard Instructions

• When aq and rl are both 0, the corresponding assembler instruction is amoadd.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoadd.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoadd.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoadd.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

16.3.3 AMOAND.D: an atomic bitwise AND instruction

Syntax:

amoand.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← mem[rs1+7:rs1] & rs2

Permission: M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoand.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoand.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

www.t-head.cn 199

Chapter 16. Appendix A Standard Instructions

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoand.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoand.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

16.3.4 AMOAND.W: an atomic bitwise AND instruction that operates on the lower
32 bits

Syntax:

amoand.w.aqrl rd, rs2, (rs1)

Operation:

rd ← sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] ← mem[rs1+3:rs1] & rs2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoand.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoand.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

www.t-head.cn 200

Chapter 16. Appendix A Standard Instructions

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoand.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoand.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

16.3.5 AMOMAX.D: an atomic signed MAX instruction

Syntax:

amomax.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← max(mem[rs1+7:rs1], rs2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amomax.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amomax.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amomax.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

www.t-head.cn 201

Chapter 16. Appendix A Standard Instructions

• When aq and rl are both 1, the corresponding assembler instruction is amomax.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

16.3.6 AMOMAX.W: an atomic signed MAX instruction that operates on the lower
32 bits

Syntax:

amomax.w.aqrl rd, rs2, (rs1)

Operation:

rd ← sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1]← max(mem[rs1+3:rs1], rs2[31:0])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amomax.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amomax.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amomax.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amomax.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-

www.t-head.cn 202

Chapter 16. Appendix A Standard Instructions

tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

16.3.7 MOMAXU.DA: an atomic unsigned MAX instruction

Syntax:

amomaxu.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← max(mem[rs1+7:rs1], rs2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amomaxu.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amomaxu.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amomaxu.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amomaxu.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

www.t-head.cn 203

Chapter 16. Appendix A Standard Instructions

16.3.8 AMOMAXU.W: an atomic unsigned MAX instruction that operates on the
lower 32 bits.

Syntax:

amomaxu.w.aqrl rd, rs2, (rs1)

Operation:

rd ← zero_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] ← max(mem[rs1+3:rs1], rs2[31:0])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amomaxu.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amomaxu.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amomaxu.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amomaxu.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

www.t-head.cn 204

Chapter 16. Appendix A Standard Instructions

16.3.9 AMOMIN.D: an atomic signed MIN instruction

Syntax:

amomin.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← min(mem[rs1+7:rs1],rs2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amomin.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amomin.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amomin.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amomin.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

www.t-head.cn 205

Chapter 16. Appendix A Standard Instructions

16.3.10 AMOMIN.W: an atomic signed MIN instruction that operates on the lower
32 bits

Syntax:

amomin.w.aqrl rd, rs2, (rs1)

Operation:

rd ← sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] ← min(mem[rs1+3:rs1], rs2[31:0])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amomin.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amomin.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amomin.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amomin.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

www.t-head.cn 206

Chapter 16. Appendix A Standard Instructions

16.3.11 AMOMINU.D: an atomic unsigned MIN instruction

Syntax:

amominu.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← min(mem[rs1+7:rs1], rs2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amominu.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amominu.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amominu.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amominu.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

www.t-head.cn 207

Chapter 16. Appendix A Standard Instructions

16.3.12 AMOMINU.W: an atomic unsigned MIN instruction that operates on the
lower 32 bits

Syntax:

amominu.w.aqrl rd, rs2, (rs1)

Operation:

rd ← sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] ← min(mem[rs1+3:rs1], rs2[31:0])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amominu.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amominu.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amominu.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amominu.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

www.t-head.cn 208

Chapter 16. Appendix A Standard Instructions

16.3.13 AMOOR.D: an atomic bitwise OR instruction.

Syntax:

amoor.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← mem[rs1+7:rs1] | rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoor.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoor.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoor.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoor.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

16.3.14 AMOOR.W: an atomic bitwise OR instruction that operates on the lower 32
bits

Syntax:

www.t-head.cn 209

Chapter 16. Appendix A Standard Instructions

amoor.w.aqrl rd, rs2, (rs1)

Operation:

rd ← sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] ← mem[rs1+3:rs1] | rs2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoor.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoor.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoor.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoor.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

16.3.15 AMOSWAP.D: an atomic swap instruction

Syntax:

amoswap.d.aqrl rd, rs2, (rs1)

Operation:

www.t-head.cn 210

Chapter 16. Appendix A Standard Instructions

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ←rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits: None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoswap.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoswap.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoswap.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoswap.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

16.3.16 AMOSWAP.W: an atomic swap instruction that operates on the lower 32 bits

Syntax:

amoswap.w.aqrl rd, rs2, (rs1)

Operation:

rd ← sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] ←rs2[31:0]

Permission:

M mode/S mode/U mode

www.t-head.cn 211

Chapter 16. Appendix A Standard Instructions

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits: None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoswap.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoswap.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoswap.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoswap.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

16.3.17 AMOXOR.D: an atomic bitwise XOR instruction

Syntax:

amoxor.d.aqrl rd, rs2, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] ← mem[rs1+7:rs1] ^ rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

www.t-head.cn 212

Chapter 16. Appendix A Standard Instructions

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoxor.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoxor.d.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoxor.d.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoxor.d.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

16.3.18 AMOXOR.W: an atomic bitwise XOR instruction that operates on the lower
32 bits

Syntax:

amoxor.w.aqrl rd, rs2, (rs1)

Operation:

rd ← sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] ← mem[rs1+3:rs1] ^ rs2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

www.t-head.cn 213

Chapter 16. Appendix A Standard Instructions

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is amoxor.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is amoxor.w.rl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is amoxor.w.aq rd, rs2, (rs1). All
memory access instructions after this instruction can be executed only after execution of this instruction
is completed.

• When aq and rl are both 1, the corresponding assembler instruction is amoxor.w.aqrl rd, rs2, (rs1).
Results of all memory access instructions before this instruction must be observed before this instruc-
tion is executed, and all memory access instructions after this instruction can be executed only after
execution of this instruction is completed.

Instruction format:

16.3.19 LR.D: a doubleword load-reserved instruction

Syntax:

lr.d.aqrl rd, (rs1)

Operation:

rd ← mem[rs1+7: rs1]

mem[rs1+7:rs1] is reserved

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is lr.d rd, (rs1).

www.t-head.cn 214

Chapter 16. Appendix A Standard Instructions

• When aq is 0 and rl is 1, the corresponding assembler instruction is lr.d.rl rd, (rs1). Results of all
memory access instructions before this instruction must be observed before this instruction is executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is lr.d.aq rd, (rs1). All memory access
instructions after this instruction can be executed only after execution of this instruction is completed.

• When aq and rl are both 1, the corresponding assembler instruction is lr.d.aqrl rd, (rs1). Results of all
memory access instructions before this instruction must be observed before this instruction is executed,
and all memory access instructions after this instruction can be executed only after execution of this
instruction is completed.

Instruction format:

16.3.20 LR.W: a word load-reserved instruction

Syntax:

lr.w.aqrl rd, (rs1)

Operation:

rd ←sign_extend(mem[rs1+3: rs1])

mem[rs1+3:rs1] is reserved

Permission:

M mode/S mode/U mode

Exception: Unaligned access exceptions, access error exceptions, and page error exceptions on atomic
instructions

Affected flag bits: None

Notes: The aq and rl bits determine the sequences of executing the memory access instructions before and
after this instruction.

• When aq and rl are both 0, the corresponding assembler instruction is lr.w rd, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is lr.w.rl rd, (rs1). Results of all
memory access instructions before this instruction must be observed before this instruction is executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is lr.w.aq rd, (rs1). All memory access
instructions after this instruction can be executed only after execution of this instruction is completed.

• When aq and rl are both 1, the corresponding assembler instruction is lr.w.aqrl rd, (rs1). Results of all
memory access instructions before this instruction must be observed before this instruction is executed,
and all memory access instructions after this instruction can be executed only after execution of this
instruction is completed.

www.t-head.cn 215

Chapter 16. Appendix A Standard Instructions

Instruction format:

16.3.21 SC.D: a doubleword store-conditional instruction

Syntax:

sc.d.aqrl rd, rs2, (rs1)

Operation:

If(mem[rs1+7:rs1] is reserved)

mem[rs1+7: rs1] ← rs2

rd ← 0

else

rd ← 1

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is sc.d rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is sc.d.rl rd, rs2, (rs1). Results of all
memory access instructions before this instruction must be observed before this instruction is executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is sc.d.aq rd, rs2, (rs1). All memory
access instructions after this instruction can be executed only after execution of this instruction is
completed.

• When aq and rl are both 1, the corresponding assembler instruction is sc.d.aqrl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed, and all memory access instructions after this instruction can be executed only after execution
of this instruction is completed.

www.t-head.cn 216

Chapter 16. Appendix A Standard Instructions

Instruction format:

16.3.22 SC.W: a word store-conditional instruction

Syntax:

sc.w.aqrl rd, rs2, (rs1)

Operation:

if(mem[rs1+3:rs1] is reserved)

mem[rs1+3:rs1] ← rs2[31:0]

rd ← 0

else

rd ← 1

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on atomic instructions

Affected flag bits:

None

Notes:

The aq and rl bits determine the sequences of executing the memory access instructions before and after this
instruction.

• When aq and rl are both 0, the corresponding assembler instruction is sc.w rd, rs2, (rs1).

• When aq is 0 and rl is 1, the corresponding assembler instruction is sc.w.rl rd, rs2, (rs1). Results of all
memory access instructions before this instruction must be observed before this instruction is executed.

• When aq is 1 and rl is 0, the corresponding assembler instruction is sc.w.aq rd, rs2, (rs1). All memory
access instructions after this instruction can be executed only after execution of this instruction is
completed.

• When aq and rl are both 1, the corresponding assembler instruction is sc.w.aqrl rd, rs2, (rs1). Results
of all memory access instructions before this instruction must be observed before this instruction is
executed, and all memory access instructions after this instruction can be executed only after execution
of this instruction is completed.

www.t-head.cn 217

Chapter 16. Appendix A Standard Instructions

Instruction format:

16.4 Appendix A-4 F instructions

The following describes the RISC-V F instructions implemented by C908. The instructions are 32 bits wide
and sorted in alphabetic order.

For single-precision floating-point instructions, if the upper 32 bits in the source register are not all 1, the
single-precision data is treated as qNaN.

When the fs bit in the mstatus register is 2’b00, running any instruction listed in this appendix will trigger
an illegal instruction exception. When the fs bit in the mstatus register is not 2’b00, it is set to 2’b11
after any instruction listed in this appendix is executed.

16.4.1 FADD.S: a single-precision floating-point add instruction

Syntax:

fadd.s fd, fs1, fs2, rm

Operation:

frd ← fs1 + fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fadd.s
fd, fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fadd.s fd, fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fadd.s fd, fs1, fs2,
rdn.

www.t-head.cn 218

Chapter 16. Appendix A Standard Instructions

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fadd.s fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fadd.s fd,
fs1, fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the floating-point control and status register
(FCSR), fcsr. The corresponding assembler instruction is fadd.s fd, fs1, fs2.

Instruction format:

16.4.2 FCLASS.S: a single-precision floating-point classify instruction

Syntax:

fclass.s rd, fs1

Operation:

if (fs1 = -inf)

rd ← 64’h1

if (fs1 = -norm)

rd ← 64’h2

if (fs1 = -subnorm)

rd ← 64’h4

if (fs1 = -zero)

rd ← 64’h8

if (fs1 = +zero)

rd ← 64’h10

if (fs1 = +subnorm)

rd ← 64’h20

if (fs1 = +norm)

rd ← 64’h40

if (fs1 = +Inf)

www.t-head.cn 219

Chapter 16. Appendix A Standard Instructions

rd ← 64’h80

if (fs1 = sNaN)

rd ← 64’h100

if (fs1 = qNaN)

rd ← 64’h200

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

16.4.3 FCVT.L.S: an instruction that converts a single-precision floating-point number
into a signed long integer

Syntax:

fcvt.l.s rd, fs1, rm

Operation:

rd ← single_convert_to_signed_long(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.l.s
rd, fs1, rne.

www.t-head.cn 220

Chapter 16. Appendix A Standard Instructions

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.l.s rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.l.s rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.l.s rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.l.s rd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.l.s rd, fs1.

Instruction format:

16.4.4 FCVT.LU.S: an instruction that converts a single-precision floating-point num-
ber into an unsigned long integer

Syntax:

fcvt.lu.s rd, fs1, rm

Operation:

rd ← single_convert_to_unsigned_long(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.lu.s
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.lu.s rd, fs1, rtz.

www.t-head.cn 221

Chapter 16. Appendix A Standard Instructions

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.lu.s rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.lu.s rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.lu.s
rd, fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.lu.s rd, fs1.

Instruction format:

16.4.5 FCVT.S.L: an instruction that converts a signed long integer into a single-
precision floating-point number

Syntax:

fcvt.s.l fd, rs1, rm

Operation:

fd ← signed_long_convert_to_single(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.s.l
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.s.l fd, rs1, rtz.

www.t-head.cn 222

Chapter 16. Appendix A Standard Instructions

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.s.l fd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.s.l fd, fs1, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.s.l fd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.s.l fd, fs1.

Instruction format:

16.4.6 FCVT.S.LU: an instruction that converts an unsigned long integer into a single-
precision floating-point number

Syntax:

fcvt.s.l fd, fs1, rm

Operation:

fd ← unsigned_long_convert_to_single_fp(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.s.lu
fd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.s.lu fd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.s.lu fd, fs1,
rdn.

www.t-head.cn 223

Chapter 16. Appendix A Standard Instructions

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.s.lu fd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.s.lu
fd, fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.s.lu fd, fs1.

Instruction format:

16.4.7 FCVT.S.W: an instruction that converts a signed integer into a single-precision
floating-point number

Syntax:

fcvt.s.w fd, rs1, rm

Operation:

fd ← signed_int_convert_to_single(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.s.w
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.s.w fd, rs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.s.w fd, rs1,
rdn.

www.t-head.cn 224

Chapter 16. Appendix A Standard Instructions

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.s.w fd, rs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.s.w fd,
rs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.s.w fd, rs1.

Instruction format:

16.4.8 FCVT.S.WU: an instruction that converts an unsigned integer into a single-
precision floating-point number

Syntax:

fcvt.s.wu fd, rs1, rm

Operation:

fd ← unsigned_int_convert_to_single_fp(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.s.wu
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.s.wu fd, rs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.s.wu fd, rs1,
rdn.

www.t-head.cn 225

Chapter 16. Appendix A Standard Instructions

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.s.wu fd, rs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.s.wu
fd, rs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.s.wu fd, rs1.

Instruction format:

16.4.9 FCVT.W.S: an instruction that converts a single-precision floating-point num-
ber into a signed integer

Syntax:

fcvt.w.s rd, fs1, rm

Operation:

tmp ← single_convert_to_signed_int(fs1)

rd←sign_extend(tmp)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.w.s
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.w.s rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.w.s rd, fs1,
rdn.

www.t-head.cn 226

Chapter 16. Appendix A Standard Instructions

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.w.s rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.w.s rd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.w.s rd, fs1.

Instruction format:

16.4.10 FCVT.WU.S: an instruction that converts a single-precision floating-point
number into an unsigned integer

Syntax:

fcvt.wu.s rd, fs1, rm

Operation:

tmp ← single_convert_to_unsigned_int(fs1)

rd←sign_extend(tmp)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.wu.s
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.wu.s rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.wu.s rd, fs1,
rdn.

www.t-head.cn 227

Chapter 16. Appendix A Standard Instructions

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.wu.s rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.wu.s
rd, fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.wu.s rd, fs1.

Instruction format:

16.4.11 FDIV.S: a single-precision floating-point divide instruction

Syntax:

fdiv.s fd, fs1, fs2, rm

Operation:

fd ← fs1 / fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, DZ, OF, UF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fdiv.s
fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fdiv.s fd fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fdiv.s fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fdiv.s fd, fs1, fs2,
rup.

www.t-head.cn 228

Chapter 16. Appendix A Standard Instructions

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fdiv.s fd,
fs1, fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fdiv.s fd, fs1, fs2.

Instruction format:

16.4.12 FEQ.S: a single-precision floating-point compare equal instruction

Syntax:

feq.s rd, fs1, fs2

Operation:

if(fs1 == fs2)

rd ← 1

else

rd ← 0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

16.4.13 FLE.S: a single-precision floating-point compare less than or equal to instruc-
tion

Syntax:

fle.s rd, fs1, fs2

www.t-head.cn 229

Chapter 16. Appendix A Standard Instructions

Operation:

if(fs1 <= fs2)

rd ← 1

else

rd ← 0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

16.4.14 FLT.S: a single-precision floating-point compare less than instruction

Syntax:

flt.s rd, fs1, fs2

Operation:

if(fs1 < fs2)

rd ← 1

else

rd ← 0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

www.t-head.cn 230

Chapter 16. Appendix A Standard Instructions

16.4.15 FLW: a single-precision floating-point load instruction

Syntax:

flw fd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

fd[31:0] ← mem[(address+3):address]

fd[63:32] ← 32’hffffffff

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or Illegal instruction.

Affected flag bits:

None

Instruction format:

16.4.16 FMADD.S: a single-precision floating-point multiply-add instruction

Syntax:

fmadd.s fd, fs1, fs2, fs3, rm

Operation:

rd ← fs1*fs2 + fs3

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

www.t-head.cn 231

Chapter 16. Appendix A Standard Instructions

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmadd.s
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmadd.s fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmadd.s fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmadd.s fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmadd.s
fd, fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmadd.s fd, fs1, fs2, fs3.

Instruction format:

16.4.17 FMAX.S: a single-precision floating-point MAX instruction

Syntax:

fmax.s fd, fs1, fs2

Operation:

if(fs1 >= fs2)

fd ← fs1

else

fd ← fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

www.t-head.cn 232

Chapter 16. Appendix A Standard Instructions

Floating-point status bit NV

Instruction format:

16.4.18 FMIN.S: a single-precision floating-point MIN instruction

Syntax:

fmin.s fd, fs1, fs2

Operation:

if(fs1 >= fs2)

fd ← fs2

else

fd ← fs1

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

16.4.19 FMSUB.S: a single-precision floating-point multiply-subtract instruction

Syntax:

fmsub.s fd, fs1, fs2, fs3, rm

Operation:

fd ← fs1*fs2 - fs3

Permission:

M mode/S mode/U mode

www.t-head.cn 233

Chapter 16. Appendix A Standard Instructions

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmsub.s
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmsub.s fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmsub.s fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmsub.s fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmsub.s fd,
fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmsub.s fd, fs1, fs2, fs3.

Instruction format:

16.4.20 FMUL.S: a single-precision floating-point multiply instruction

Syntax:

fmul.s fd, fs1, fs2, rm

Operation:

fd ← fs1 * fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

www.t-head.cn 234

Chapter 16. Appendix A Standard Instructions

Affected flag bits:

Floating-point status bits NV, OF, UF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmul.s
fd, fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmul.s fd, fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmul.s fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmul.s fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmul.s fd,
fs1, fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmul.s fs1, fs2.

Instruction format:

16.4.21 FMV.W.X: a single-precision floating-point write move instruction

Syntax:

fmv.w.x fd, rs1

Operation:

fd[31:0] ← rs[31:0]

fd[63:32] ← 32’hffffffff

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

www.t-head.cn 235

Chapter 16. Appendix A Standard Instructions

None

Instruction format:

16.4.22 FMV.X.H: a single-precision floating-point read move instruction

Syntax:

fmv.x.w rd, fs1

Operation:

tmp[31:0] ← fs1[31:0]

rd ← sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

16.4.23 FNMADD.S: a single-precision floating-point negate-(multiply-add) instruc-
tion

Syntax:

fnmadd.s fd, fs1, fs2, fs3, rm

Operation:

fd ←-(fs1*fs2 + fs3)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

www.t-head.cn 236

Chapter 16. Appendix A Standard Instructions

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fnmadd.s
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fnmadd.s fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fnmadd.s fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fnmadd.s fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fnmadd.s
fd, fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fnmadd.s fd, fs1, fs2, fs3.

Instruction format:

16.4.24 FNMSUB.S: a single-precision floating-point negate-(multiply-subtract) in-
struction

Syntax:

fnmsub.s fd, fs1, fs2, fs3, rm

Operation:

fd ← -(fs1*fs2 - fs3)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

www.t-head.cn 237

Chapter 16. Appendix A Standard Instructions

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fnmsub.s
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fnmsub.s fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fnmsub.s fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fnmsub.s fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fnmsub.s
fd, fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fnmsub.s fd, fs1, fs2, fs3.

Instruction format:

16.4.25 FSGNJ.S: a single-precision floating-point sign-injection instruction

Syntax:

fsgnj.s fd, fs1, fs2

Operation:

fd[30:0] ← fs1[30:0]

fd[31] ← fs2[31]

fd[63:32] ← 32’hffffffff

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

www.t-head.cn 238

Chapter 16. Appendix A Standard Instructions

None

Instruction format:

16.4.26 FSGNJN.S: a single-precision floating-point negate sign-injection instruction

Syntax:

fsgnjn.s fd, fs1, fs2

Operation:

fd[30:0] ← fs1[30:0]

fd[31] ← ! fs2[31]

fd[63:32] ← 32’hffffffff

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

16.4.27 FSGNJX.S: a single-precision floating-point XOR sign-injection instruction

Syntax:

fsgnjx.s fd, fs1, fs2

Operation:

fd[30:0] ← fs1[30:0]

fd[31] ← fs1[31] ^ fs2[31]

fd[63:32] ← 32’hffffffff

Permission:

M mode/S mode/U mode

www.t-head.cn 239

Chapter 16. Appendix A Standard Instructions

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

16.4.28 FSQRT.S: a single-precision floating-point square-root instruction

Syntax:

fsqrt.s fd, fs1, rm

Operation:

fd ← sqrt(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fsqrt.s
fd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fsqrt.s fd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fsqrt.s fd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fsqrt.s fd, fs1, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fsqrt.s fd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

www.t-head.cn 240

Chapter 16. Appendix A Standard Instructions

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fsqrt.s fd, fs1.

Instruction format:

16.4.29 FSUB.S: a single-precision floating-point subtract instruction

Syntax:

fsub.s fd, fs1, fs2, rm

Operation:

fd ← fs1 - fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fsub.fd,
fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fsub.s fd, fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fsub.s fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fsub.s fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fsub.s fd,
fs1, fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fsub.s fd, fs1, fs2.

www.t-head.cn 241

Chapter 16. Appendix A Standard Instructions

Instruction format:

16.4.30 FSW: a single-precision floating-point store instruction

Syntax:

fsw fs2, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

mem[(address+31):address] ← fs2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

16.5 Appendix A-6 C Instructions

This section describes RISC-V C instructions implemented by C908. The instructions are 16 bits wide and
sorted in alphabetic order.

16.5.1 C.ADD: a signed add instruction

Syntax:

c.add rd, rs2

Operation:

rd ← rs1 + rs2

Permission:

M mode/S mode/U mode

www.t-head.cn 242

Chapter 16. Appendix A Standard Instructions

Exception:

None

Notes:

rs1 = rd != 0

rs2 ! = 0

Instruction format:

16.5.2 C.ADDI: a signed add immediate instruction

Syntax:

c.addi rd, nzimm6

Operation:

rd ← rs1 + sign_extend(nzimm6)

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 = rd != 0

nzimm6!=0

Instruction format:

16.5.3 C.ADDIW: an add immediate instruction that operates on the lower 32 bits

Syntax:

c.addiw rd, imm6

Operation:

www.t-head.cn 243

Chapter 16. Appendix A Standard Instructions

tmp[31:0] ← rs1[31:0] + sign_extend(imm6)

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 = rd != 0

Instruction format:

16.5.4 C.ADDI4SPN: an instruction that adds an immediate scaled by 4 to the stack
pointer

Syntax:

c.addi4spn rd, sp, nzuimm8<<2

Operation:

rd ← sp + zero_extend(nzuimm8<<2)

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

nzuimm8 != 0

Typical rd code registers are:

• 000 x8

• 001 x9

• 010 x10

• 011 x11

www.t-head.cn 244

Chapter 16. Appendix A Standard Instructions

• 100 x12

• 101 x13

• 110 x14

• 111 x15

Instruction format:

16.5.5 C.ADDI16SP: an instruction that adds an immediate scaled by 16 to the stack
pointer

Syntax:

c.addi16sp sp, nzuimm6<<4

Operation:

sp ← sp + sign_extend(nzuimm6<<4)

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.5.6 C.ADDW: a signed add instruction that operates on the lower 32 bits

Syntax:

c.addw rd, rs2

Operation:

tmp[31:0] ← rs1[31:0] + rs2[31:0]

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

www.t-head.cn 245

Chapter 16. Appendix A Standard Instructions

Exception:

None

Notes:

rs1 = rd

Typical rd/rs1 and rs2 code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

16.5.7 C.AND: a bitwise AND instruction

Syntax:

c.and rd, rs2

Operation:

rd ← rs1 & rs2

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 = rd

Typical rd/rs1 and rs2 code registers are:

• 000: x8

www.t-head.cn 246

Chapter 16. Appendix A Standard Instructions

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

16.5.8 C.ANDI: an immediate bitwise AND instruction

Syntax:

c.andi rd, imm6

Operation:

rd ← rs1 & sign_extend(imm6)

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 = rd

Typical rd/rs1 code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

www.t-head.cn 247

Chapter 16. Appendix A Standard Instructions

• 111: x15

Instruction format:

16.5.9 C.BEQZ: a branch-if-equal-to-zero instruction

Syntax:

c.beqz rs1, label

Operation:

if (rs1 == 0)

next pc = current pc + imm8<<1;

else

next pc = current pc + 2;

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

Typical rs1 code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

The compiler calculates immediate 8 based on the label.

The jump range of the instruction is ±256 B address space.

www.t-head.cn 248

Chapter 16. Appendix A Standard Instructions

Instruction format:

16.5.10 C.BNEZ: a branch-if-not-equal-to-zero instruction

Syntax:

c.bnez rs1, label

Operation:

if (rs1 != 0)

next pc = current pc + imm8<<1;

else

next pc = current pc + 2;

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

Typical rs1 code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

The compiler calculates immediate 12 based on the label.

The jump range of the instruction is ±256 B address space.

Instruction format:

www.t-head.cn 249

Chapter 16. Appendix A Standard Instructions

16.5.11 C.EBREAK: a break instruction

Syntax:

c.ebreak

Operation:

Generates breakpoint exceptions or enables the core to enter the debug mode.

Permission:

M mode/S mode/U mode

Exception:

Breakpoint exceptions

Instruction format:

16.5.12 C.FLD: a floating-point load doubleword instruction

Syntax:

c.fld fd, uimm5<<3(rs1)

Operation:

address ← rs1+ zero_extend(uimm5<<3)

fd ←mem[address+7:address]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Notes:

Typical rs1 code registers are:

• 000: x8

www.t-head.cn 250

Chapter 16. Appendix A Standard Instructions

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Typical fd code registers are:

• 000: f8

• 001: f9

• 010: f10

• 011: f11

• 100: f12

• 101: f13

• 110: f14

• 111: f15

Instruction format:

16.5.13 C.FLDSP: a floating-point doubleword load stack instruction

Syntax:

c.fldsp fd, uimm6<<3(sp)

Operation:

address ← sp+ zero_extend(uimm6<<3)

fd ←mem[address+7:address]

Permission:

M mode/S mode/U mode

www.t-head.cn 251

Chapter 16. Appendix A Standard Instructions

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Instruction format:

16.5.14 C.FSD: a floating-point store doubleword instruction

Syntax:

c.fsd fs2，uimm5<<3(rs1)

Operation:

address ← rs1+ zero_extend(uimm5<<3)

mem[address+7:address] ←fs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Notes:

Typical fs1 code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Typical rs2 code registers are:

• 000: f8

• 001: f9

www.t-head.cn 252

Chapter 16. Appendix A Standard Instructions

• 010: f10

• 011: f11

• 100: f12

• 101: f13

• 110: f14

• 111: f15

Instruction format:

16.5.15 C.FSDSP: a floating-point store doubleword stack pointer instruction

Syntax:

c.fsdsp fs2, uimm6<<3(sp)

Operation:

address ← sp+ zero_extend(uimm6<<3)

mem[address+7:address] ←fs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Instruction format:

16.5.16 C.J: a unconditional jump instruction

Syntax:

c.j label

Operation:

next pc ← current pc + sign_extend(imm<<1);

www.t-head.cn 253

Chapter 16. Appendix A Standard Instructions

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

The compiler calculates immediate 11 based on the label.

The jump range of the instruction is ±2 KB address space.

Instruction format:

16.5.17 C.JALR: a jump and link register instruction

Syntax:

c.jalr rs1

Operation:

next pc ← rs1;

x1←current pc + 2;

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 != 0。

When MMU is enabled, the jump range is the entire 512 GB address space.

When MMU is disabled, the jump range is the entire 1 TB address space.

Instruction format:

www.t-head.cn 254

Chapter 16. Appendix A Standard Instructions

16.5.18 C.JR: a jump register instruction

Syntax:

c.jr rs1

Operation:

next pc = rs1;

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 != 0。

When MMU is enabled, the jump range is the entire 512 GB address space.

When MMU is disabled, the jump range is the entire 1 TB address space.

Instruction format:

16.5.19 C.LD: a load doubleword instruction

Syntax:

c.ld rd, uimm5<<3(rs1)

Operation:

address ← rs1+ zero_extend(uimm5<<3)

rd ←mem[address+7:address]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Notes:

Typical rs1/rd code registers are:

• 000: x8

www.t-head.cn 255

Chapter 16. Appendix A Standard Instructions

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

16.5.20 C.LDSP: a load doubleword instruction

Syntax:

c.ldsp rd, uimm6<<3(sp)

Operation:

address ← sp+ zero_extend(uimm6<<3)

rd ←mem[address+7:address]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Notes:

rd != 0

Instruction format:

www.t-head.cn 256

Chapter 16. Appendix A Standard Instructions

16.5.21 C.LI: a load immediate instruction

Syntax:

c.li rd, imm6

Operation:

rd ←sign_extend(imm6)

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rd != 0

Instruction format:

16.5.22 C.LUI: a load upper immediate instruction

Syntax:

c.lui rd, nzimm6

Operation:

rd ←sign_extend(nzimm6<<12)

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rd != 0。

Nzimm6 != 0。

Instruction format:

www.t-head.cn 257

Chapter 16. Appendix A Standard Instructions

16.5.23 C.LW: a load word instruction

Syntax:

c.lw rd, uimm5<<2(rs1)

Operation:

address ← rs1+ zero_extend(uimm5<<2)

tmp[31:0] ←mem[address+3:address]

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Notes:

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

www.t-head.cn 258

Chapter 16. Appendix A Standard Instructions

16.5.24 C.LWSP: a load word stack pointer instruction

Syntax:

c.lwsp rd, uimm6<<2(sp)

Operation:

address ← sp+ zero_extend(uimm6<<2)

tmp[31:0] ←mem[address+3:address]

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on load instructions

Notes:

rd != 0

Instruction format:

16.5.25 C.MV: an instruction that copies the value in rs to rd

Syntax:

c.mv rd, rs2

Operation:

rd ← rs2;

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs2 != 0, rd !=0。

Instruction format:

www.t-head.cn 259

Chapter 16. Appendix A Standard Instructions

16.5.26 C.NOP: a no-operation instruction

Syntax:

c.nop

Operation:

No operations

Permission:

M mode/S mode/U mode

Exception:

None

Instruction format:

16.5.27 C.OR: a bitwise OR instruction

Syntax:

c.or rd, rs2

Operation:

rd ← rs1 | rs2

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 = rd

Typical rd/rs1 code registers are:

• 000: x8

• 001: x9

www.t-head.cn 260

Chapter 16. Appendix A Standard Instructions

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

16.5.28 C.SD: a store doubleword instruction

Syntax:

c.sd rs2, uimm5<<3(rs1)

Operation:

address ← rs1+ zero_extend(uimm5<<3)

mem[address+7:address] ←rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Notes:

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

www.t-head.cn 261

Chapter 16. Appendix A Standard Instructions

Instruction format:

16.5.29 C.SDSP: a store doubleword stack pointer instruction

Syntax:

c.fsdsp rs2, uimm6<<3(sp)

Operation:

address ← sp+ zero_extend(uimm6<<3)

mem[address+7:address] ←rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Instruction format:

16.5.30 C.SLLI: an immediate logical left shift instruction

Syntax:

c.slli rd, nzuimm6

Operation:

rd ←rs1 << nzuimm6

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

www.t-head.cn 262

Chapter 16. Appendix A Standard Instructions

rs1==rd

rd/rs1 != 0，nzuimm6 != 0

Instruction format:

16.5.31 C.SRAI: a right shift arithmetic immediate instruction

Syntax:

c.srli rd, nzuimm6

Operation:

rd ←rs1 >>>nzuimm6

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

nzuimm6 != 0

rs1 == rd

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

www.t-head.cn 263

Chapter 16. Appendix A Standard Instructions

16.5.32 C.SRLI: an immediate right shift instruction

Syntax:

c.srli rd, nzuimm6

Operation:

rd ←rs1 >> nzuimm6

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

nzuimm6 != 0

rs1 == rd

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

www.t-head.cn 264

Chapter 16. Appendix A Standard Instructions

16.5.33 C.SW: a store word instruction

Syntax:

c.sw rs2, uimm5<<2(rs1)

Operation:

address ← rs1+ zero_extend(uimm5<<2)

mem[address+3:address] ←rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Notes:

Typical rs1/rs2 code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

16.5.34 C.SWSP: a store word stack pointer instruction

Syntax:

c.swsp rs2, uimm6<<2(sp)

Operation:

www.t-head.cn 265

Chapter 16. Appendix A Standard Instructions

address ← sp+ zero_extend(uimm6<<2)

mem[address+3:address] ←rs2

Permission:

M mode/S mode/U mode

Exception:

Unaligned access exceptions, access error exceptions, and page error exceptions on store instructions

Instruction format:

16.5.35 C.SUB: a signed subtract instruction

Syntax:

c.sub rd, rs2

Operation:

rd ← rs1 - rs2

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 == rd

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

www.t-head.cn 266

Chapter 16. Appendix A Standard Instructions

Instruction format:

16.5.36 C.SUBW: a signed subtract instruction that operates on the lower 32 bits

Syntax:

c.subw rd, rs2

Operation:

tmp[31:0] ← rs1[31:0] - rs2[31:0]

rd ←sign_extend(tmp)

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 == rd

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

www.t-head.cn 267

Chapter 16. Appendix A Standard Instructions

16.5.37 C.XOR: a bitwise XOR instruction

Syntax:

c.xor rd, rs2

Operation:

rd ← rs1 ^ rs2

Permission:

M mode/S mode/U mode

Exception:

None

Notes:

rs1 == rd

Typical rs1/rd code registers are:

• 000: x8

• 001: x9

• 010: x10

• 011: x11

• 100: x12

• 101: x13

• 110: x14

• 111: x15

Instruction format:

16.6 Appendix A-8 Pseudo instructions

RISC-V implements a series of pseudo instructions. The instructions listed in this section are for reference
only and are sorted in alphabetic order.

Pseudo instruction Base instruction Meaning
beqz rs, offset beq rs, x0, offset Takes the branch if rs is zero.

Continued on next page

www.t-head.cn 268

Chapter 16. Appendix A Standard Instructions

Table 16.1 – continued from previous page
Pseudo instruction Base instruction Meaning
bnez rs, offset bne rs, x0, offset Takes the branch if rs is not zero.
blez rs, offset bge x0,rs, offset Takes the branch if rs is less than

or equal to zero.
bgez rs, offset bge rs, x0, offset Takes the branch if rs is greater

than or equal to zero.
bltz rs, offset blt rs, x0, offset Takes the branch if rs is less than

zero.
bgtz rs, offset blt x0, xs, offset Takes the branch if rs is greater

than zero.
bgt rs, rt, offset blt rt, rs, offset Takes the branch if rs is greater

than rt.
ble rs, rt, offset bge rt, rs, offset Takes the branch if rs is less than

or equal to rt.
bgtu rs, rt, offset bltu rt, rs, offset Takes the branch if rs is greater

than rt, using unsigned compari-
son.

bleu rs, rt, offset bgeu rt, rs, offset Takes the branch if rs is less than
or equal to rt, using unsigned
comparison.

call offset auipc x6, offset[31:12]
jalr x1, x6, offset[11:0]

Calls far-away subroutine.

csrc csr, rs csrrc x0, csr, rs Clears bits in the control/status
register (CSR).

csrci csr, imm csrrci x0, csr, imm Clears bits in the CSR, immedi-
ate.

csrs csr, rs csrrs x0, csr, rs Sets bits in the CSR.
csrsi csr, imm csrrsi x0, csr, imm Sets bits in the CSR, immediate
csrw csr, rs csrrw x0, csr, rs Writes the CSR.
csrwi csr, imm csrrwi x0, csr, imm Writes the CSR, immediate.
fabs.d rd, rs fsgnjx.d rd, rs, rs Calculates the double-precision

floating point (FP) absolute
value.

fabs.s rd, rs fsgnjx.s rd, rs, rs Calculates the single-precision
FP absolute value.

fence fence iorw, iorw Fences on all memory and I/O.
fl{w|d} rd, symbol, rt auipc rt, symbol[31:12]

fl{w|d} rd, symbol[11:0](rt)
An FP load global instruction.

Continued on next page

www.t-head.cn 269

Chapter 16. Appendix A Standard Instructions

Table 16.1 – continued from previous page
Pseudo instruction Base instruction Meaning
fmv.d rd, rs fsgnj.d rd, rs, rs A double-precision FP copy in-

struction.
fmv.s rd, rs fsgnj.s rd, rs, rs A single-precision FP copy in-

struction.
fneg.d rd, rs fsgnjn.d rd, rs, rs A double-precision FP negate in-

struction.
fneg.s rd, rs fsgnjn.s rd, rs, rs A single-precision FP negate in-

struction.
frcsr rd csrrs x0, fcsr, x0 Reads FP CSR.
frflags rd csrrs rd, fflags, x0 Reads FP exception flags.
frrm rd csrrs rd, frm, x0 Reads FP rounding mode.
fscsr rs csrrw x0, fcsr, rs Writes FP CSR.
fscsr rd, rs csrrs rd, fcsr, rs Swaps FP CSR.
fsflags rs csrrw x0, fcsr, rs Writes FP exception flags.
fsflags rd, rs csrrs rd, fcsr, rs Swaps FP exception flags.
fsflagsi imm csrrwi x0, fflags, imm Writes FP exception flags, imme-

diate.
fsflagsi rd, imm csrrwi rd, fflags, imm Swaps FP exception flags, imme-

diate.
fsrm rs csrrw x0, frm, rs Writes FP rounding mode.
fsrm rd, rs csrrs rd, frm, rs Swaps FP rounding mode.
fsrmi imm csrrwi x0, frm, imm Writes FP rounding mode, imme-

diate.
fsrmi rd, imm csrrwi rd, frm, imm Swaps FP rounding mode, imme-

diate.
fs{w|d} rd, symbol,rt auipc rt,symbol[31:12]

fs{w|d} rd, symbol[11:0](rt)
An FP store global instruction.

j offset jal x0, offset A jump instruction.
jal offset jal x1, offset Jumps to subroutine and link.
jalr rs jalr x1, rs, 0 Jumps to subroutine and links

register.
jr rs jalr x0, rs, 0 A jump register instruction.
la rd, symbol auipc rd, symbol[31:12]

addi rd, rd, symbol[11:0]
A load address instruction.

li rd, immediate Split into multiple instructions
based on the size of the immedi-
ate

A load immediate instruction

Continued on next page

www.t-head.cn 270

Chapter 16. Appendix A Standard Instructions

Table 16.1 – continued from previous page
Pseudo instruction Base instruction Meaning
l{b|h|w|d} rd,symbol, rt auipc rt,| symbol[31:12]

l{b|h|w|d} rd,symbol[11:0](rt)
A load global instruction.

mv rd, rs addi rd, rs, 0 A instruction that copies the
value in rs to rd.

neg rd, rs sub rd, x0, rs A register negate instruction.
negw rd, rs subw rd, x0, rs Negates the lower 32 bits of reg-

isters.
nop addi x0,x0,0 A no operation instruction.
not rd, rs xori rd, rs, -1 A register NOT instruction.
rdcycle[h] rd csrrs rd, cycle[h], x0 A read cycle counter instruction.
rdinstret[h] rd csrrs rd, instret[h], x0 Reads instructions-retired

counter.
rdtime[h] rd csrrs rd, time[h], x0 Reads real-time clock.
ret jalr x0, x1,0 Returns from subroutine.
s{b|h|w|d} rd, symbol, rt auipc rt,symbol[31:12]

s{b|h|w|d} rd,symbol[11:0](rt)
A store global instruction.

seqz rd, rs sltiu rd, rs, 1 Sets 0 in registers to 1.
sextw rd, rs addiw rd, rs, 0 A sign extend word instruction.
sgtz rd, rs slt rd, rs, x0, rs Sets rd to 1 if rs is greater than

zero.
sltz rd, rs slt rd, rs, rs, x0 Sets rd to 1 if rs is less than zero.
snez rd, rs sltu rd, rs, x0, rs Sets rd to 1 if rs is not equal to

zero.
tail offset auipc x6,offset[31:12]

jalr x0, x6,offset[11:0]
Tail call far-away subroutine.

www.t-head.cn 271

CHAPTER 17

Appendix B T-Head Extended Instructions

Apart from the GC instruction sets defined in the standard, C908 provides custom instruction sets, includ-
ing the cache instruction set, synchronization instruction set, arithmetic operation instruction set, bitwise
operation instruction set, storage instruction set, and half-precision floating-point instruction set.

Among these instruction sets, the cache instructions, synchronization instructions, arithmetic operation
instructions, bitwise operation instructions, and storage instructions can be executed only when the value
of mxstatus.theadisaee is 1. Otherwise, an instruction exception will occur. Half-precision floating-point
instructions can be executed only when the value of mstatus.fs ! is 2’b00. Otherwise, an illegal instruction
exception will occur. The following describes each instruction in these instruction sets.

17.1 Appendix B-1 Cache instructions

You can use the cache instruction set to manage caches. Each instruction has 32 bits.

Arithmetic operation instructions in this instruction set are described in alphabetical order.

17.1.1 DCACHE.CALL: an instruction that clears all dirty page table entries in the
D-Cache

Syntax:

dcache.call

Operation:

272

Chapter 17. Appendix B T-Head Extended Instructions

Clears all page table entries in the L1 D-Cache and writes all dirty page table entries back into the next-level
storage. You can perform this operation only on the current core.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruction.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of illegal
instruction.

Instruction format:

17.1.2 DCACHE.CIALL: an instruction that clears all dirty page table entries in the
D-Cache and invalidates the D-Cache

Syntax:

dcache.ciall

Operation:

Writes all dirty page table entries in the L1 D-Cache back into the next-level storage and invalidates all these
page table entries.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruction.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of illegal
instruction.

Instruction format:

www.t-head.cn 273

Chapter 17. Appendix B T-Head Extended Instructions

17.1.3 DCACHE.CIPA: clears dirty page table entries that match the specified physical
addresses from the D-Cache and invalidates the the D-Cache

Syntax:

dcache.cipa rs1

Operation:

Writes page table entries that match the specified physical addresses of the D-Cache or L2 Cache of rs1 back
into the next-level storage and invalidates these page table entries. You can perform this operation on all
cores and the L2 Cache.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruction.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of illegal
instruction.

Instruction format:

17.1.4 DCACHE.CISW: an instruction that clears dirty page table entries in the D-
Cache based on the specified way and set and invalidates the D-Cache

Syntax:

dcache.cisw rs1

Operation:

Writes the dirty page table entry that matches the specified way and set from the L1 Cache of rs1 back
into the next-level storage and invalidates this page table entry. You can perform this operation only on the
current core.

Permission:

M mode/S mode

Exception:

Illegal instruction.

www.t-head.cn 274

Chapter 17. Appendix B T-Head Extended Instructions

Notes:

C908 D-Cache is a 2-way set-associative cache. rs1[31] specifies the way and rs1[s:6] specifies the set. When
the size of the D-Cache is 32 KB, w denotes 13. When the size of the D-Cache is 64 KB, w denotes 14, and
so forth.

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

17.1.5 DCACHE.CIVA: an instruction that clears dirty page table entries that match
the specified virtual addresses in the D-Cache and invalidates the D-Cache

Syntax:

dcache.civa rs1

Operation:

Writes the page table entry that matches the specified virtual address from the D-Cache or L2 Cache of rs1
back into the next-level storage and invalidates this page table entry. You can perform this operation on the
current core and the L2 Cache. The sharing attribute of the virtual address determines whether you can
perform this operation on other cores.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction or error page during instruction loading.

Notes:

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1 and the value of mxstatus.ucme is 1, this instruction can be
executed in U mode.

• If the value of mxstatus.theadisaee is 1 and the value of mxstatus.ucme is 0, executing this instruction
in U mode causes an exception of illegal instruction.

Instruction format:

www.t-head.cn 275

Chapter 17. Appendix B T-Head Extended Instructions

17.1.6 DCACHE.CPA: an instruction that clears dirty page table entries that match
the specified physical addresses from the D-Cache

Syntax:

dcache.cpa rs1

Operation:

Writes the page table entry that matches the specified physical address from the D-Cache or L2
Cache of rs1 back into the next-level storage. You can perform this operation on all cores and
the L2 Cache.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal
instruction.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception
of illegal instruction.

Instruction format:

17.1.7 DCACHE.CPAL1: an instruction that clears dirty page table entries that match
the specified physical addresses from the L1 D-Cache

Syntax:

dcache.cpal1 rs1

Operation: Writes the page table entry that matches the specified physical address from the D-Cache of
rs1 back into the next-level storage. You can perform this operation on all cores and the L1 Cache.

Permission:

M mode/S mode

www.t-head.cn 276

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal
instruction.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception
of illegal instruction.

Instruction format:

17.1.8 DCACHE.CVA: an instruction that clears dirty page table entries that match
the specified virtual addresses in the D-Cache

Syntax:

dcache.cva rs1

Operation:

Writes the page table entry that matches the specified virtual address from the D-Cache or L2
Cache of rs1 back into the next-level storage. You can perform this operation on the current
core and the L2 Cache. The sharing attribute of the virtual address determines whether you can
perform this operation on other cores.

Permission:

M mode/S mode

Exception:

Illegal instruction or error page during instruction loading.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal
instruction.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception
of illegal instruction.

Instruction format:

www.t-head.cn 277

Chapter 17. Appendix B T-Head Extended Instructions

17.1.9 DCACHE.CVAL1: an instruction that clears dirty page table entries that match
the specified virtual addresses in the L1 D-Cache

Syntax:

dcache.cval1 rs1

Operation:

Writes the page table entry that matches the specified virtual address from the D-Cache of s1 back into the
next-level storage. You can perform this operation on all cores and the L1 Cache.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction or error page during instruction loading.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruction.

If the value of mxstatus.theadisaee is 1 and the value of mxstatus.ucme is 0, executing this
instruction in U mode causes an exception of illegal instruction.

Instruction format:

17.1.10 DCACHE.IPA: an instruction that invalidates page table entries that match
the specified physical addresses in the D-Cache

Syntax:

dcache.ipa rs1

Operation:

Invalidates the page table entry that matches the specified physical address in the D-Cache or L2 Cache of
rs1. You can perform this operation on all cores and the L2 Cache.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

www.t-head.cn 278

Chapter 17. Appendix B T-Head Extended Instructions

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

17.1.11 DCACHE.ISW: an instruction that invalidates page table entries in the D-
Cache based on the specified way and set and invalidates the D-Cache

Syntax:

dcache.isw rs1

Operation:

Invalidates the page table entry in the D-Cache based on the specified set and way. You can perform this
operation only on the current core.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

C908 D-Cache is a 2-way set-associative cache. rs1[31] specifies the way and rs1[s:6] specifies the set. When
the size of the D-Cache is 32 KB, w denotes 13. When the size of the D-Cache is 64 KB, w denotes 14, and
so forth.

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

www.t-head.cn 279

Chapter 17. Appendix B T-Head Extended Instructions

17.1.12 DCACHE.IVA: an instruction that invalidates the D-Cache based on the spec-
ified virtual address

Syntax:

dcache.iva rs1

Operation:

Invalidates the page table entry that matches the specified virtual address from the D-Cache or L2 Cache
of rs1. You can perform this operation on the current core and the L2 Cache. The sharing attribute of the
virtual address determines whether you can perform this operation on other cores.

Permission:

M mode/S mode

Exception:

Illegal instruction or error page during instruction loading.

Notes:

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

17.1.13 DCACHE.IALL: an instruction that invalidates all page table entries in the
D-Cache.

Syntax:

dcache.iall

Operation:

Invalidates all page table entries in the L1 Cache. You can perform this operation only on the current core.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

www.t-head.cn 280

Chapter 17. Appendix B T-Head Extended Instructions

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

17.1.14 ICACHE.IALL: an instruction that invalidates all page table entries in the
I-Cache

Syntax:

icache.iall

Operation:

Invalidates all page table entries in the I-Cache. You can perform this operation only on the current core.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruction.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of illegal
instruction.

Instruction format:

17.1.15 ICACHE.IALLS: an instruction that invalidates all page table entries in the
I-Cache through broadcasting

Syntax:

icache.ialls

Operation:

www.t-head.cn 281

Chapter 17. Appendix B T-Head Extended Instructions

Invalidates all page table entries in the I-Cache and invalidates all page table entries in the I-Cache of other
cores through broadcasting. You can perform this operation on all cores.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruction.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of illegal
instruction.

Instruction format:

17.1.16 ICACHE.IPA: an instruction that invalidates page table entries that match
the specified physical addresses in the I-Cache

Syntax:

icache.ipa rs1

Operation:

Invalidates the page table entry that matches the specified physical address in the I-Cache of rs1. You can
perform this operation on all cores.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruction.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of illegal
instruction.

Instruction format:

www.t-head.cn 282

Chapter 17. Appendix B T-Head Extended Instructions

17.1.17 ICACHE.IVA: an instruction that invalidates page table entries that match
the specified virtual addresses in the I-Cache

Syntax:

icache.iva rs1

Operation:

Invalidates the page table entry that matches the specified virtual address in the I-Cache of rs1. You can
perform this operation only on the current core. The sharing attribute of the virtual address determines
whether you can perform this operation on other cores.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction or error page during instruction loading.

Notes:

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruction.

If the value of mxstatus.theadisaee is 1 and the value of mxstatus.ucme is 1, this instruction can be executed
in U mode.

If the value of mxstatus.theadisaee is 1 and the value of mxstatus.ucme is 0, executing this instruction in U
mode causes an exception of illegal instruction.

Instruction format:

17.1.18 L2CACHE.CALL: an instruction that clears all dirty page table entries in the
L2 Cache

Syntax:

l2cache.call

Operation:

Writes all dirty page table entries from the L2 Cache back into the next-level storage.

Permission:

M mode/S mode

Exception:

Illegal instruction.

www.t-head.cn 283

Chapter 17. Appendix B T-Head Extended Instructions

Notes:

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

17.1.19 L2CACHE.CIALL: an instruction that clears all dirty page table entries in the
L2 Cache and invalidates the L2 Cache

Syntax:

l2cache.ciall

Operation:

Writes all dirty page table entries from the L2 Cache back into the next-level storage and invalidates all page
table entries in the L2 Cache.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

• If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal in-
struction.

• If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

17.1.20 L2CACHE.IALL: an instruction that invalidates the L2 Cache

Syntax:

l2cache.iall

www.t-head.cn 284

Chapter 17. Appendix B T-Head Extended Instructions

Operation:

Invalidates all page table entries in the L2 Cache.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

• If the value of mxstatus.cskisayee is 0, executing this instruction causes an exception of illegal instruc-
tion.

• If the value of mxstatus.cskisayee is 1, executing this instruction in U mode causes an exception of
illegal instruction.

Instruction format:

17.1.21 DCACHE.CSW: an instruction that clears dirty page table entries in the D-
Cache based on the specified set and way

Syntax:

dcache.csw rs1

Operation:

Writes the dirty page table entry from the D-Cache back into the next-level storage device based on the
specified set and way.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

C908 D-Cache is a 2-way set-associative cache. rs1[31] specifies the way and rs1[s:6] specifies the set. When
the size of the D-Cache is 32 KB, w denotes 13. When the size of the D-Cache is 64 KB, w denotes 14, and
so forth.

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruction.

www.t-head.cn 285

Chapter 17. Appendix B T-Head Extended Instructions

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of illegal
instruction.

Instruction format:

Fig. 17.1: DCACHE.CSW

17.2 Appendix B-2 Multi-core synchronization instructions

This synchronization instruction set extends multi-core synchronization instructions. Each instruction has
32 bits. Synchronization instructions in this instruction set are described in alphabetical order.

17.2.1 SFENCE.VMAS: a broadcast instruction that synchronizes the virtual memory
address

Syntax:

sfence.vmas rs1,rs2

Operation:

Invalidates and synchronizes page table entries in the virtual memory and broadcasts them to other cores in
the cluster.

Permission:

M mode/S mode

Exception:

Illegal instruction.

Notes:

rs1 is the virtual address, and rs2 is the address space identifier (ASID).

• If the value of rs1 is x0 and the value of rs2 is x0, invalidate all page table entries in the TLB and
broadcast them to other cores in the cluster.

• When rs1! and rs2 are both x0, all TLB entries that hit the virtual address specified by rs1 are
invalidated and broadcast to other cores in the cluster.

www.t-head.cn 286

Chapter 17. Appendix B T-Head Extended Instructions

• When rs1 and rs2! are both x0, all TLB entries that hit the process ID specified by rs2 are invalidated
and broadcast to other cores in the cluster.

• When rs1! and rs2! are both x0, all TLB entries that hit the virtual address specified by rs1 and the
process ID specified by rs2 are invalidated and broadcast to other cores in the cluster.

If the value of mxstatus.theadisaee is 0, executing this instruction causes an exception of illegal instruction.

If the value of mxstatus.theadisaee is 1, executing this instruction in U mode causes an exception of illegal
instruction.

Instruction format:

17.2.2 SYNC: an instruction that performs the synchronization operation

Syntax:

sync

Operation:

Ensures that all preceding instructions retire earlier than this instruction and all subsequent instructions
retire later than this instruction.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

17.2.3 SYNC.I: an instruction that synchronizes the clearing operation.

Syntax:

sync.i

Operation:

Ensures that all preceding instructions retire earlier than this instruction and all subsequent instructions
retire later than this instruction, and clears the pipeline when this instruction retires.

Permission:

www.t-head.cn 287

Chapter 17. Appendix B T-Head Extended Instructions

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

17.2.4 SYNC.IS: a broadcast instruction that synchronizes the clearing operation

Syntax:

sync.is

Operation:

Ensures that all preceding instructions retire earlier than this instruction and all subsequent instructions
retire later than this instruction. Clears the pipeline when this instruction retires and broadcasts the request
to other cores.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

17.2.5 SYNC.S: a broadcast instruction that performs a synchronization operation

Syntax:

sync.s

Operation:

Ensures that all preceding instructions retire earlier than this instruction and all subsequent instructions
retire later than this instruction, and broadcasts the request to other cores.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

www.t-head.cn 288

Chapter 17. Appendix B T-Head Extended Instructions

Instruction format:

17.3 Appendix B-3 Arithmetic operation instructions

The arithmetic operation instruction set extends arithmetic operation instructions. Each instruction has 32
bits.

Arithmetic operation instructions in this instruction set are described in alphabetical order.

17.3.1 ADDSL: an add register instruction that shifts registers

Syntax:

addsl rd rs1, rs2, imm2

Operation:

rd ← rs1+ rs2<<imm2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

17.3.2 MULA: a multiply-add instruction

Syntax:

mula rd, rs1, rs2

Operation:

rd ← rd+ (rs1 * rs2)[63:0]

Permission:

M mode/S mode/U mode

www.t-head.cn 289

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Instruction format:

17.3.3 MULAH: a multiply-add instruction that operates on the lower 16 bits

Syntax:

mulah rd, rs1, rs2

Operation:

tmp[31:0] ← rd[31:0]+ (rs1[15:0] * rs[15:0])

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

17.3.4 MULAW: a multiply-add instruction that operates on the lower 32 bits

Syntax:

mulaw rd, rs1, rs2

Operation:

tmp[31:0] ← rd[31:0]+ (rs1[31:0] * rs[31:0])[31:0]

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

www.t-head.cn 290

Chapter 17. Appendix B T-Head Extended Instructions

17.3.5 MULS: a multiply-subtract instruction

Syntax:

muls rd, rs1, rs2

Operation:

rd ← rd- (rs1 * rs2)[63:0]

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

17.3.6 MULSH: a multiply-subtract instruction that operates on the lower 16 bits

Syntax:

mulsh rd, rs1, rs2

Operation:

tmp[31:0] ← rd[31:0]- (rs1[15:0] * rs[15:0])

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

www.t-head.cn 291

Chapter 17. Appendix B T-Head Extended Instructions

17.3.7 MULSW: a multiply-subtract instruction that operates on the lower 32 bits

Syntax:

mulaw rd, rs1, rs2

Operation:

tmp[31:0] ← rd[31:0]- (rs1[31:0] * rs[31:0])

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

17.3.8 MVEQZ: an instruction that sends a message when the register is 0

Syntax:

mveqz rd, rs1, rs2

Operation: if (rs2 == 0)

rd ← rs1

else

rd ← rd

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

www.t-head.cn 292

Chapter 17. Appendix B T-Head Extended Instructions

17.3.9 MVNEZ: an instruction that sends a message when the register is not 0

Syntax:

mvnez rd, rs1, rs2

Operation:

if (rs2 != 0)

rd ← rs1

else

rd ← rd

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

17.3.10 SRRI: an instruction that implements a cyclic right shift operation on a linked
list

Syntax:

srri rd, rs1, imm6

Operation:

rd ← rs1 >>>> imm6

Shifts the original value of rs1 to the right, disconnects the last value on the list, and re-attaches the value
to the start of the linked list.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

www.t-head.cn 293

Chapter 17. Appendix B T-Head Extended Instructions

17.3.11 SRRIW: an instruction that implements a cyclic right shift operation on a
linked list of low 32 bits of registers.

Syntax:

srriw rd, rs1, imm5

Operation:

rd ← sign_extend(rs1[31:0] >>>> imm5)

Shifts the original value of rs1[31:0] to the right, disconnects the last value on the list, and re-attaches the
value to the start of the linked list.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

17.4 Appendix B-4 Bitwise operation instructions

The bitwise operation instruction set extends bitwise operation instructions. Each instruction has 32 bits.

Arithmetic operation instructions in this instruction set are described in alphabetical order.

17.4.1 EXT: a signed extension instruction that extracts consecutive bits of a register

Syntax:

ext rd, rs1, imm1,imm2

Operation:

rd←sign_extend(rs1[imm1:imm2])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

www.t-head.cn 294

Chapter 17. Appendix B T-Head Extended Instructions

If imm1 is smaller than imm2, the action of this instruction is not predictable.

Instruction format:

17.4.2 EXTU: a zero extension instruction that extracts consecutive bits of a register

Syntax:

extu rd, rs1, imm1,imm2

Operation:

rd←zero_extend(rs1[imm1:imm2])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Notes:

If imm1 is smaller than imm2, the action of this instruction is not predictable.

Instruction format:

17.4.3 FF0: an instruction that finds the first bit with the value of 0 in a register

Syntax:

ff0 rd, rs1

Operation:

Finds the first bit with the value of 0 from the highest bit of rs1 and writes the result back into the rd
register. If the highest bit of rs1 is 0, the result 0 is returned. If all the bits in rs1 are 1, the result 64 is
returned.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

www.t-head.cn 295

Chapter 17. Appendix B T-Head Extended Instructions

Instruction format:

17.4.4 FF1: an instruction that finds the bit with the value of 1

Syntax:

ff1 rd, rs1

Operation:

Finds the first bit with the value of 1 from the highest bit of rs1 and writes the index of this bit back into
rd. If the highest bit of rs1 is 1, the result 0 is returned. If all the bits in rs1 are 1, the result 64 is returned.

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

17.4.5 REV: an instruction that reverses the byte order in a word stored in the register

Syntax:

rev rd, rs1

Operation:

rd[63:56] ←rs1[7:0]

rd[55:48] ←rs1[15:8]

rd[47:40] ←rs1[23:16]

rd[39:32] ←rs1[31:24]

rd[31:24] ←rs1[39:32]

rd[23:16] ←rs1[47:40]

rd[15:8] ←rs1[55:48]

rd[7:0] ←rs1[63:56]

Permission:

www.t-head.cn 296

Chapter 17. Appendix B T-Head Extended Instructions

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

17.4.6 REVW: an instruction that reverses the byte order in a low 32-bit word

Syntax:

revw rd, rs1

Operation:

tmp[31:24] ←rs1[7:0]

tmp [23:16] ←rs1[15:8]

tmp [15:8] ←rs1[23:16]

tmp [7:0] ←rs1[31:24]

rd ←sign_extend(tmp[31:0])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

17.4.7 TST: an instruction that tests bits with the value of 0

Syntax:

tst rd, rs1, imm6

Operation:

if(rs1[imm6] == 1)

rd←1

else

www.t-head.cn 297

Chapter 17. Appendix B T-Head Extended Instructions

rd←0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

17.4.8 TSTNBZ: an instruction that tests bytes with the value of 0

Syntax:

tstnbz rd, rs1

Operation:

rd[63:56] ← (rs1[63:56] == 0) ? 8’hff : 8’h0

rd[55:48] ← (rs1[55:48] == 0) ? 8’hff : 8’h0

rd[47:40] ← (rs1[47:40] == 0) ? 8’hff : 8’h0

rd[39:32] ← (rs1[39:32] == 0) ? 8’hff : 8’h0

rd[31:24] ← (rs1[31:24] == 0) ? 8’hff : 8’h0

rd[23:16] ← (rs1[23:16] == 0) ? 8’hff : 8’h0

rd[15:8] ← (rs1[15:8] == 0) ? 8’hff : 8’h0

rd[7:0] ← (rs1[7:0] == 0) ? 8’hff : 8’h0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Instruction format:

www.t-head.cn 298

Chapter 17. Appendix B T-Head Extended Instructions

17.5 Appendix B-5 Storage instructions

The storage instruction set extends storage instructions. Each instruction has 32 bits.

Arithmetic operation instructions in this instruction set are described in alphabetical order.

17.5.1 FLRD: a load doubleword instruction that shifts floating-point registers

Syntax:

flrd rd, rs1, rs2, imm2

Operation:

rd ←mem[(rs1+rs2<<imm2)+7: (rs1+rs2<<imm2)]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

17.5.2 FLRW: a load word instruction that shifts floating-point registers

Syntax:

flrw rd, rs1, rs2, imm2

Operation:

rd ←one_extend(mem[(rs1+rs2<<imm2)+3: (rs1+rs2<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

www.t-head.cn 299

Chapter 17. Appendix B T-Head Extended Instructions

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

17.5.3 FLURD: a load doubleword instruction that shifts low 32 bits of floating-point
registers

Syntax:

flurd rd, rs1, rs2, imm2

Operation:

rd ←mem[(rs1+rs2[31:0]<<imm2)+7: (rs1+rs2[31:0]<<imm2)]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

17.5.4 FLURW: a load word instruction that shifts low 32 bits of floating-point registers

Syntax:

flurw rd, rs1, rs2, imm2

Operation:

rd ←one_extend(mem[(rs1+rs2[31:0]<<imm2)+3: (rs1+rs2[31:0]<<imm2)])

Permission:

M mode/S mode/U mode

www.t-head.cn 300

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

17.5.5 FSRD: a store doubleword instruction that shifts floating-point registers

Syntax:

fsrd rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2<<imm2)+7: (rs1+rs2<<imm2)] ←rd[63:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

17.5.6 FSRW: a store word instruction that shifts floating-point registers.

Syntax:

fsrw rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2<<imm2)+3: (rs1+rs2<<imm2)] ←rd[31:0]

www.t-head.cn 301

Chapter 17. Appendix B T-Head Extended Instructions

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

17.5.7 FSURD: a store doubleword instruction that shifts low 32 bits of floating-point
registers

Syntax:

fsurd rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2[31:0]<<imm2)+7: (rs1+rs2[31:0]<<imm2)] ←rd[63:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

17.5.8 FSURW: a store word instruction that shifts low 32 bits of floating-point reg-
isters

Syntax:

www.t-head.cn 302

Chapter 17. Appendix B T-Head Extended Instructions

fsurw rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2[31:0]<<imm2)+3: (rs1+rs2[31:0]<<imm2)] ←rd[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

If the value of mxstatus.theadisaee is 1’b0 or the value of mstatus.fs is 2’b00, executing this instruction
causes an exception of illegal instruction.

Instruction format:

17.5.9 LBIA: a base-address auto-increment instruction that extends signed bits and
loads bytes

Syntax:

lbia rd, (rs1), imm5,imm2

Operation:

rd ←sign_extend(mem[rs1])

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

www.t-head.cn 303

Chapter 17. Appendix B T-Head Extended Instructions

17.5.10 LBIB: a load byte instruction that auto-increments the base address and ex-
tends signed bits

Syntax:

lbib rd, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

rd ←sign_extend(mem[rs1])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

17.5.11 LBUIA: a base-address auto-increment instruction that extends zero bits and
loads bytes

Syntax:

lbuia rd, (rs1), imm5,imm2

Operation:

rd ←zero_extend(mem[rs1])

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

www.t-head.cn 304

Chapter 17. Appendix B T-Head Extended Instructions

Instruction format:

17.5.12 LBUIB: a load byte instruction that auto-increments the base address and
extends zero bits

Syntax:

lbuib rd, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

rd ←zero_extend(mem[rs1])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

17.5.13 LDD: an instruction that loads double registers

Syntax:

ldd rd1,rd2, (rs1),imm2

Operation:

address←rs1 + zero_extend(imm2<<4)

rd1←mem[address+7:address]

rd2←mem[address+15:address+8]

Permission:

M mode/S mode/U mode

www.t-head.cn 305

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd1, rd2, and rs1 must not be the same.

Instruction format:

17.5.14 LDIA: a base-address auto-increment instruction that loads doublewords and
extends signed bits

Syntax:

ldia rd, (rs1), imm5,imm2

Operation:

rd ←sign_extend(mem[rs1+7:rs1])

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

17.5.15 LDIB: a load doubleword instruction that auto-increments the base address
and extends the signed bits

Syntax:

ldib rd, (rs1), imm5,imm2

Operation:

www.t-head.cn 306

Chapter 17. Appendix B T-Head Extended Instructions

rs1←rs1 + sign_extend(imm5 << imm2)

rd ←sign_extend(mem[rs1+7:rs1])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

17.5.16 LHIA: a base-address auto-increment instruction that loads halfwords and
extends signed bits

Syntax:

lhia rd, (rs1), imm5,imm2

Operation:

rd ←sign_extend(mem[rs1+1:rs1])

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

www.t-head.cn 307

Chapter 17. Appendix B T-Head Extended Instructions

17.5.17 LHIB: a load halfword instruction that auto-increments the base address and
extends signed bits

Syntax:

lhib rd, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

rd ←sign_extend(mem[rs1+1:rs1])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

17.5.18 LHUIA: a base-address auto-increment instruction that extends zero bits and
loads halfwords

Syntax:

lhuia rd, (rs1), imm5,imm2

Operation:

rd ←zero_extend(mem[rs1+1:rs1])

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

www.t-head.cn 308

Chapter 17. Appendix B T-Head Extended Instructions

Instruction format:

17.5.19 LHUIB: a load halfword instruction that auto-increments the base address and
extends zero bits

Syntax:

lhuib rd, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

rd ←zero_extend(mem[rs1+1:rs1])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

17.5.20 LRB: a load byte instruction that shifts registers and extends signed bits

Syntax:

lrb rd, rs1, rs2, imm2

Operation:

rd ←sign_extend(mem[(rs1+rs2<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

www.t-head.cn 309

Chapter 17. Appendix B T-Head Extended Instructions

17.5.21 LRBU: a load byte instruction that shifts registers and extends zero bits

Syntax:

lrbu rd, rs1, rs2, imm2

Operation:

rd ←zero_extend(mem[(rs1+rs2<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.22 LRD: a load doubleword instruction that shifts registers

Syntax:

lrd rd, rs1, rs2, imm2

Operation:

rd ←mem[(rs1+rs2<<imm2)+7: (rs1+rs2<<imm2)]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.23 LRH: a load halfword instruction that shifts registers and extends signed bits

Syntax:

www.t-head.cn 310

Chapter 17. Appendix B T-Head Extended Instructions

lrh rd, rs1, rs2, imm2

Operation:

rd ←sign_extend(mem[(rs1+rs2<<imm2)+1: (rs1+rs2<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.24 LRHU: a load halfword instruction that shifts registers and extends zero bits

Syntax:

lrhu rd, rs1, rs2, imm2

Operation:

rd ←zero_extend(mem[(rs1+rs2<<imm2)+1: (rs1+rs2<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.25 LRW: a load word instruction that shifts registers and extends signed bits

Syntax:

lrw rd, rs1, rs2, imm2

Operation:

rd ←sign_extend(mem[(rs1+rs2<<imm2)+3: (rs1+rs2<<imm2)])

Permission:

M mode/S mode/U mode

www.t-head.cn 311

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.26 LRWU: a load word instruction that shifts registers and extends zero bits

Syntax:

lrwu rd, rs1, rs2, imm2

Operation:

rd ←zero_extend(mem[(rs1+rs2<<imm2)+3: (rs1+rs2<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.27 LURB: a load byte instruction that shifts low 32 bits of registers and extends
signed bits

Syntax:

lurb rd, rs1, rs2, imm2

Operation:

rd ←sign_extend(mem[(rs1+rs2[31:0]<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

www.t-head.cn 312

Chapter 17. Appendix B T-Head Extended Instructions

Instruction format:

17.5.28 LURBU: a load byte instruction that shifts low 32 bits of registers and extends
zero bits

Syntax:

lurbu rd, rs1, rs2, imm2

Operation:

rd ←zero_extend(mem[(rs1+rs2[31:0]<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

17.5.29 LURD: a load doubleword instruction that shifts low 32 bits of registers

Syntax:

lurd rd, rs1, rs2, imm2

Operation:

rd ←mem[(rs1+rs2[31:0]<<imm2)+7: (rs1+rs2[31:0]<<imm2)]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

www.t-head.cn 313

Chapter 17. Appendix B T-Head Extended Instructions

Instruction format:

17.5.30 LURH: a load halfword instruction that shifts low 32 bits of registers and
extends signed bits

Syntax:

lurh rd, rs1, rs2, imm2

Operation:

rd ←sign_extend(mem[(rs1+rs2[31:0]<<imm2)+1:

(rs1+rs2[31:0]<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

17.5.31 LURHU: a load halfword instruction that shifts low 32 bits of registers and
extends zero bits

Syntax:

lurhu rd, rs1, rs2, imm2

Operation:

rd ←zero_extend(mem[(rs1+rs2[31:0]<<imm2)+1:

(rs1+rs2[31:0]<<imm2)])

Permission:

M mode/S mode/U mode

www.t-head.cn 314

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

17.5.32 LURW: a load word instruction that shifts low 32 bits of registers and extends
signed bits

Syntax:

lurw rd, rs1, rs2, imm2

Operation:

rd ←sign_extend(mem[(rs1+rs2[31:0]<<imm2)+3:

(rs1+rs2[31:0]<<imm2)])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

17.5.33 LURWU: a load word instruction that shifts 32 bits of registers and extends
zero bits

Syntax:

lwd rd1, rd2, (rs1),imm2

Operation:

www.t-head.cn 315

Chapter 17. Appendix B T-Head Extended Instructions

address←rs1+zero_extend(imm2<<3)

rd1 ←sign_extend(mem[address+3: address])

rd2 ←sign_extend(mem[address+7: address+4])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd1, rd2, and rs1 must not be the same.

Instruction format:

17.5.34 LWD: a load word instruction that loads double registers and extends signed
bits

Syntax:

lwd rd, imm7(rs1)

Operation:

address←rs1+sign_extend(imm7)

rd ←sign_extend(mem[address+31: address])

rd+1 ←sign_extend(mem[address+63: address+32])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

www.t-head.cn 316

Chapter 17. Appendix B T-Head Extended Instructions

17.5.35 LWIA: a base-address auto-increment instruction that extends signed bits and
loads words

Syntax:

lwia rd, (rs1), imm5,imm2

Operation:

rd ←sign_extend(mem[rs1+3:rs1])

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

17.5.36 LWIB: a load word instruction that auto-increments the base address and
extends signed bits

Syntax:

lwib rd, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

rd ←sign_extend(mem[rs1+3:rs1])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

www.t-head.cn 317

Chapter 17. Appendix B T-Head Extended Instructions

Instruction format:

17.5.37 LWUD: a load word instruction that loads double registers and extends zero
bits

Syntax:

lwud rd1,rd2, (rs1),imm2

Operation:

address←rs1+zero_extend(imm2<<3)

rd1 ←zero_extend(mem[address+3: address])

rd2 ←zero_extend(mem[address+7: address+4])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd1, rd2, and rs1 must not be the same.

Instruction format:

17.5.38 LWUIA: a base-address auto-increment instruction that extends zero bits and
loads words

Syntax:

lwuia rd, (rs1), imm5,imm2

Operation:

rd ←zero_extend(mem[rs1+3:rs1])

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

www.t-head.cn 318

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

17.5.39 LWUIB: a load word instruction that auto-increments the base address and
extends zero bits

Syntax:

lwuib rd, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

rd ←zero_extend(mem[rs1+3:rs1])

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

The values of rd and rs1 must not be the same.

Instruction format:

17.5.40 SBIA: a base-address auto-increment instruction that stores bytes

Syntax:

sbia rs2, (rs1), imm5,imm2

Operation:

mem[rs1]←rs2[7:0]

rs1←rs1 + sign_extend(imm5 << imm2)

www.t-head.cn 319

Chapter 17. Appendix B T-Head Extended Instructions

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.41 SBIB: a store byte instruction that auto-increments the base address

Syntax:

sbib rs2, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

mem[rs1] ←rs2[7:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.42 SDD: an instruction that stores double registers

Syntax:

sdd rd1,rd2, (rs1),imm2

Operation:

address←rs1 + zero_extend(imm2<<4)

mem[address+7:address] ←rd1

mem[address+15:address+8]←rd2

Permission:

M mode/S mode/U mode

www.t-head.cn 320

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.43 SDIA: a base-address auto-increment instruction that stores doublewords

Syntax:

sdia rs2, (rs1), imm5,imm2

Operation:

mem[rs1+7:rs1]←rs2[63:0]

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.44 SDIB: a store doubleword instruction that auto-increments the base address

Syntax:

sdib rs2, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

mem[rs1+7:rs1] ←rs2[63:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

www.t-head.cn 321

Chapter 17. Appendix B T-Head Extended Instructions

17.5.45 SHIA: a base-address auto-increment instruction that stores halfwords

Syntax:

shia rs2, (rs1), imm5,imm2

Operation:

mem[rs1+1:rs1]←rs2[15:0]

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.46 SHIB: a store halfword instruction that auto-increments the base address

Syntax:

shib rs2, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

mem[rs1+1:rs1] ←rs2[15:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

www.t-head.cn 322

Chapter 17. Appendix B T-Head Extended Instructions

17.5.47 SRB: a store byte instruction that shifts registers

Syntax:

srb rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2<<imm2)] ←rd[7:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.48 SRD: a store doubleword instruction that shifts registers

Syntax:

srd rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2<<imm2)+7: (rs1+rs2<<imm2)] ←rd[63:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.49 SRH: a store halfword instruction that shifts registers

Syntax:

srh rd, rs1, rs2, imm2

Operation:

www.t-head.cn 323

Chapter 17. Appendix B T-Head Extended Instructions

mem[(rs1+rs2<<imm2)+1: (rs1+rs2<<imm2)] ←rd[15:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.50 SRW: a store word instruction that shifts registers

Syntax:

srw rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2<<imm2)+3: (rs1+rs2<<imm2)] ←rd[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.51 SURB: a store byte instruction that shifts low 32 bits of registers

Syntax:

surb rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2[31:0]<<imm2)] ←rd[7:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

www.t-head.cn 324

Chapter 17. Appendix B T-Head Extended Instructions

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

17.5.52 SURD: a store doubleword instruction that shifts low 32 bits of registers

Syntax:

surd rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2[31:0]<<imm2)+7: (rs1+rs2[31:0]<<imm2)] ←rd[63:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

17.5.53 SURH: a store halfword instruction that shifts low 32 bits of registers

Syntax:

surh rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2[31:0]<<imm2)+1: (rs1+rs2[31:0]<<imm2)] ←rd[15:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

www.t-head.cn 325

Chapter 17. Appendix B T-Head Extended Instructions

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

17.5.54 SURW: a store word instruction that shifts low 32 bits of registers

Syntax:

surw rd, rs1, rs2, imm2

Operation:

mem[(rs1+rs2[31:0]<<imm2)+3: (rs1+rs2[31:0]<<imm2)] ←rd[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Notes:

rs2[31:0] specifies an unsigned value. 0s are added to the high bits [63:32] for address calculation.

Instruction format:

17.5.55 SWIA: a base-address auto-increment instruction that stores words

Syntax:

swia rs2, (rs1), imm5,imm2

Operation:

mem[rs1+3:rs1]←rs2[31:0]

rs1←rs1 + sign_extend(imm5 << imm2)

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

www.t-head.cn 326

Chapter 17. Appendix B T-Head Extended Instructions

17.5.56 SWIB: a store word instruction that auto-increments the base address

Syntax:

swib rs2, (rs1), imm5,imm2

Operation:

rs1←rs1 + sign_extend(imm5 << imm2)

mem[rs1+3:rs1] ←rs2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.5.57 SWD: an instruction that stores the low 32 bits of double registers

Syntax:

swd rd1,rd2,(rs1),imm2

Operation:

address←rs1+ zero_extend(imm2<<3)

mem[address+3:address] ←rd1[31:0]

mem[address+7:address+4]←rd2[31:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

www.t-head.cn 327

Chapter 17. Appendix B T-Head Extended Instructions

17.6 Appendix B-6 Half-precision floating-point instructions

You can use instructions in this instruction set to process floating-point half-precision data. Each instruction
has 32 bits. Instructions in this instruction set are described in alphabetical order.

17.6.1 FADD.H: a half-precision floating-point add instruction

Syntax:

fadd.h fd, fs1, fs2, rm

Operation:

fd ← fs1 + fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fadd.h
fd, fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fadd.h fd, fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fadd.h fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fadd.h fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fadd.h fd,
fs1,fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fadd.h fd, fs1, fs2.

Instruction format:

www.t-head.cn 328

Chapter 17. Appendix B T-Head Extended Instructions

17.6.2 FCLASS.H: a half-precision floating-point classification instruction

Syntax:

fclass.h rd, fs1

Operation:

if (fs1 = -inf)

rd ← 64’h1

if (fs1 = -norm)

rd ← 64’h2

if (fs1 = -subnorm)

rd ← 64’h4

if (fs1 = -zero)

rd ← 64’h8

if (fs1 = +zero)

rd ← 64’h10

if (fs1 = +subnorm)

rd ← 64’h20

if (fs1 = +norm)

rd ← 64’h40

if (fs1 = +inf)

rd ← 64’h80

if (fs1 = sNaN)

rd ← 64’h100

if (fs1 = qNaN)

rd ← 64’h200

Permission:

M mode/S mode/U mode

www.t-head.cn 329

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

17.6.3 FCVT.D.H: an instruction that converts half-precision floating-point data to
double-precision floating-point data

Syntax:

fcvt.d.h fd, fs1

Operation:

fd ← half_convert_to_double(fs1)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

17.6.4 FCVT.H.D: an instruction that converts double-precision floating-point data to
half-precision floating-point data

Syntax:

fcvt.h.d fd, fs1, rm

Operation:

fd ← double_convert_to_half(fs1)

Permission:

www.t-head.cn 330

Chapter 17. Appendix B T-Head Extended Instructions

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.h.d
fd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.h.d fd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.h.d fd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.h.d fd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.h.d fd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.h.d fd, fs1.

Instruction format:

17.6.5 FCVT.H.L: an instruction that converts a signed long integer into a half-
precision floating-point number

Syntax:

fcvt.h.l fd, rs1, rm

Operation:

fd ← signed_long_convert_to_half(rs1)

Permission:

M mode/S mode/U mode

www.t-head.cn 331

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NX and OF

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.h.l
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.h.l fd, rs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.h.l fd, rs1,
fdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.h.l fd, rs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.h.l fd,
rs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.h.l fd, rs1.

Instruction format:

17.6.6 FCVT.H.LU: an instruction that converts an unsigned long integer into a half-
precision floating-point number

Syntax:

fcvt.h.lu fd, rs1, rm

Operation:

fd ← unsigned_long_convert_to_half_fp(rs1)

Permission:

M mode/S mode/U mode

www.t-head.cn 332

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NX and OF

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.h.lu
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.h.lu fd, rs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.h.lu fd, rs1,
fdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.h.lu fd, rs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.h.lu
fd, rs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.h.lu fd, rs1.

Instruction format:

17.6.7 FCVT.H.S: an instruction that converts single precision floating-point data to
half-precision floating-point data

Syntax:

fcvt.h.s fd, fs1, rm

Operation:

fd ← single_convert_to_half(fs1)

Permission:

M mode/S mode/U mode

www.t-head.cn 333

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.h.s
fd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.h.s fd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.h.s fd, fs1,
fdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.h.s fd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.h.s fd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.h.s fd, fs1.

Instruction format:

17.6.8 FCVT.H.W: an instruction that converts a signed integer into a half-precision
floating-point number

Syntax:

fcvt.h.w fd, rs1, rm

Operation:

fd ← signed_int_convert_to_half(rs1)

Permission:

M mode/S mode/U mode

www.t-head.cn 334

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NX and OF

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.h.w
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.h.w fd, rs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.h.w fd, rs1,
fdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.h.w fd, rs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.h.w
fd, rs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.h.w fd, rs1.

Instruction format:

17.6.9 FCVT.H.WU: an instruction that converts an unsigned integer into a half-
precision floating-point number

Syntax:

fcvt.h.wu fd, rs1, rm

Operation:

fd ← unsigned_int_convert_to_half_fp(rs1)

Permission:

M mode/S mode/U mode

www.t-head.cn 335

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NX and OF

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.h.wu
fd, rs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.h.wu fd, rs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.h.wu fd, rs1,
fdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.h.wu fd, rs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.h.wu
fd, rs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.h.wu fd, rs1.

Instruction format:

17.6.10 FCVT.L.H: an instruction that converts a half-precision floating-point number
to a signed long integer

Syntax:

fcvt.l.h rd, fs1, rm

Operation:

rd ← half_convert_to_signed_long(fs1)

Permission:

M mode/S mode/U mode

www.t-head.cn 336

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.l.h
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.l.h rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.l.h rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.l.h rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.l.h rd,
fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.l.h rd, fs1.

Instruction format:

17.6.11 FCVT.LU.H: an instruction that converts a half-precision floating-point num-
ber to an unsigned long integer

Syntax:

fcvt.lu.h rd, fs1, rm

Operation:

rd ← half_convert_to_unsigned_long(fs1)

Permission:

M mode/S mode/U mode

www.t-head.cn 337

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.lu.h
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.lu.h rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.lu.h rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.lu.h rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.lu.h
rd, fs1, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.lu.h rd, fs1.

Instruction format:

17.6.12 FCVT.S.H: an instruction that converts half-precision floating-point data to
single precision floating-point data

Syntax:

fcvt.s.h fd, fs1

Operation:

fd ← half_convert_to_single(fs1)

Permission:

M mode/S mode/U mode

www.t-head.cn 338

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

17.6.13 FCVT.W.H: an instruction that converts a half-precision floating-point number
to a signed integer

Syntax:

fcvt.w.h rd, fs1, rm

Operation:

tmp ← half_convert_to_signed_int(fs1)

rd←sign_extend(tmp)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.w.h
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.w.h rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.w.h rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.w.h rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.w.h
rd, fs1, rmm.

www.t-head.cn 339

Chapter 17. Appendix B T-Head Extended Instructions

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.w.h rd, fs1.

Instruction format:

17.6.14 FCVT.WU.H: an instruction that converts a half-precision floating-point num-
ber to an unsigned integer

Syntax:

fcvt.wu.h rd, fs1, rm

Operation:

tmp ← half_convert_to_unsigned_int(fs1)

rd←sign_extend(tmp)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fcvt.wu.h
rd, fs1, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fcvt.wu.h rd, fs1, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fcvt.wu.h rd, fs1,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fcvt.wu.h rd, fs1,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fcvt.wu.h
rd, fs1, rmm.

www.t-head.cn 340

Chapter 17. Appendix B T-Head Extended Instructions

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fcvt.wu.h rd, fs1.

Instruction format:

17.6.15 FDIV.H: a half-precision floating-point division instruction

Syntax:

fdiv.h fd, fs1, fs2, rm

Operation:

fd ← fs1 / fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, DZ, OF, UF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fdiv.h
fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fdiv.h fd fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fdiv.h fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fdiv.h fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fdiv.h fd,
fs1, fs2, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

www.t-head.cn 341

Chapter 17. Appendix B T-Head Extended Instructions

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fdiv.h fd, fs1, fs2.

Instruction format:

17.6.16 FEQ.H: an equal instruction that compares two half-precision numbers

Syntax:

feq.h rd, fs1, fs2

Operation:

if(fs1 == fs2)

rd ← 1

else

rd ← 0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

17.6.17 FLE.H: a less than or equal to instruction that compares two half-precision
floating-point numbers

Syntax:

fle.h rd, fs1, fs2

Operation:

if(fs1 <= fs2)

rd ← 1

www.t-head.cn 342

Chapter 17. Appendix B T-Head Extended Instructions

else

rd ← 0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

17.6.18 FLH: an instruction that loads half-precision floating-point data

Syntax:

flh fd, imm12(rs1)

Operation:

address←rs1+sign_extend(imm12)

fd[15:0] ← mem[(address+1):address]

fd[63:16] ← 48’hffffffffffff

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Affected flag bits:

None

Instruction format:

www.t-head.cn 343

Chapter 17. Appendix B T-Head Extended Instructions

17.6.19 FLT.H: a less than instruction that compares two half-precision floating-point
numbers

Syntax:

flt.h rd, fs1, fs2

Operation:

if(fs1 < fs2)

rd ← 1

else

rd ← 0

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

17.6.20 FMADD.H: a half-precision floating-point multiply-add instruction

Syntax:

fmadd.h fd, fs1, fs2, fs3, rm

Operation:

fd ← fs1*fs2 + fs3

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

www.t-head.cn 344

Chapter 17. Appendix B T-Head Extended Instructions

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmadd.h
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmadd.h fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmadd.h fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmadd.h fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmadd.h
fd, fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmadd.h fd, fs1, fs2, fs3.

Instruction format:

17.6.21 FMAX.H: a half-precision floating-point maximum instruction

Syntax:

fmax.h fd, fs1, fs2

Operation:

if(fs1 >= fs2)

fd ← fs1

else

fd ← fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

www.t-head.cn 345

Chapter 17. Appendix B T-Head Extended Instructions

Floating-point status bit NV

Instruction format:

17.6.22 FMIN.H: a half-precision floating-point minimum instruction

Syntax:

fmin.h fd, fs1, fs2

Operation:

if(fs1 >= fs2)

fd ← fs2

else

fd ← fs1

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bit NV

Instruction format:

17.6.23 FMSUB.H: a half-precision floating-point multiply-subtract instruction

Syntax:

fmsub.h fd, fs1, fs2, fs3, rm

Operation:

fd ← fs1*fs2 - fs3

Permission:

M mode/S mode/U mode

www.t-head.cn 346

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmsub.h
fd, fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmsub.h fd, fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmsub.h fd, fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmsub.h fd, fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmsub.h
fd, fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmsub.h fd, fs1, fs2, fs3.

Instruction format:

17.6.24 FMUL.H: a half-precision floating-point multiply instruction

Syntax:

fmul.h fd, fs1, fs2, rm

Operation:

fd ← fs1 * fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

www.t-head.cn 347

Chapter 17. Appendix B T-Head Extended Instructions

Affected flag bits:

Floating-point status bits NV, OF, UF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fmul.h
fd, fs1, fs2, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fmul.h fd, fs1, fs2, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fmul.h fd, fs1, fs2,
rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fmul.h fd, fs1, fs2,
rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fmul.h fd,
fs1,fs2 , rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fmul.h fs1,fs2.

Instruction format:

17.6.25 FMV.H.X: a half-precision floating-point write transmit instruction

Syntax:

fmv.h.x fd, rs1

Operation:

fd[15:0] ← rs1[15:0]

fd[63:16] ← 48’hffffffffffff

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

www.t-head.cn 348

Chapter 17. Appendix B T-Head Extended Instructions

None

Instruction format:

17.6.26 FMV.X.H: a transmission instruction that reads half-precision floating-point
registers

Syntax:

fmv.x.h rd, fs1

Operation:

tmp[15:0] ← fs1[15:0]

rd ← sign_extend(tmp[15:0])

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

17.6.27 FNMADD.H: a half-precision floating-point negate-(multiply-add) instruction

Syntax:

fnmadd.h fd, fs1, fs2, fs3, rm

Operation:

fd ←-(fs1*fs2 + fs3)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

www.t-head.cn 349

Chapter 17. Appendix B T-Head Extended Instructions

Affected flag bits:

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fnmadd.h
fd,fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fnmadd.h fd,fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fnmadd.h fd,fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fnmadd.h fd,fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fnmadd.h
fd,fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fnmadd.h fd,fs1, fs2, fs3.

Instruction format:

17.6.28 FNMSUB.H: a half-precision floating-point negate-(multiply-subtract) instruc-
tion

Syntax:

fnmsub.h fd, fs1, fs2, fs3, rm

Operation:

fd ← -(fs1*fs2 - fs3)

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

www.t-head.cn 350

Chapter 17. Appendix B T-Head Extended Instructions

Floating-point status bits NV, OF, UF, and IX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fnmsub.h
fd,fs1, fs2, fs3, rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fnmsub.h fd,fs1, fs2, fs3, rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fnmsub.h fd,fs1,
fs2, fs3, rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fnmsub.h fd,fs1,
fs2, fs3, rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fnmsub.h
fd,fs1, fs2, fs3, rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fnmsub.h fd,fs1, fs2, fs3.

Instruction format:

17.6.29 FSGNJ.H: a half-precision floating-point sign-injection instruction

Syntax:

fsgnj.h fd, fs1, fs2

Operation:

fd[14:0] ← fs1[14:0]

fd[15] ← fs2[15]

fd[63:16] ← 48’hffffffffffff

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

www.t-head.cn 351

Chapter 17. Appendix B T-Head Extended Instructions

None

Instruction format:

17.6.30 FSGNJN.H: a half-precision floating-point sign-injection negate instruction

Syntax:

fsgnjn.h fd, fs1, fs2

Operation:

fd[14:0] ← fs1[14:0]

fd[15] ← ! fs2[15]

fd[63:16] ← 48’hffffffffffff

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

17.6.31 FSGNJX.H: a half-precision floating-point sign-injection XOR instruction

Syntax:

fsgnjx.h fd, fs1, fs2

Operation:

fd[14:0] ← fs1[14:0]

fd[15] ← fs1[15] ^ fs2[15]

fd[63:16] ← 48’hffffffffffff

Permission:

M mode/S mode/U mode

www.t-head.cn 352

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

None

Instruction format:

17.6.32 FSH: an instruction that stores half-precision floating point numbers

Syntax:

fsh fs2, imm12(fs1)

Operation:

address←fs1+sign_extend(imm12)

mem[(address+1):address] ← fs2[15:0]

Permission:

M mode/S mode/U mode

Exception:

Unaligned access, access error, page error, or illegal instruction.

Instruction format:

17.6.33 FSQRT.H: an instruction that calculates the square root of the half-precision
floating-point number

Syntax:

fsqrt.h fd, fs1, rm

Operation:

fd ← sqrt(fs1)

Permission:

M mode/S mode/U mode

www.t-head.cn 353

Chapter 17. Appendix B T-Head Extended Instructions

Exception:

Illegal instruction.

Affected flag bits:

Floating-point status bits NV and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fsqrt.h
fd, fs1,rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fsqrt.h fd, fs1,rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fsqrt.h fd, fs1,rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fsqrt.h fd, fs1,rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fsqrt.h fd,
fs1,rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fsqrt.h fd, fs1.

Instruction format:

17.6.34 FSUB.H: a half-precision floating-point subtract instruction

Syntax:

fsub.h fd, fs1, fs2, rm

Operation:

fd ← fs1 - fs2

Permission:

M mode/S mode/U mode

Exception:

Illegal instruction.

Affected flag bits:

www.t-head.cn 354

Chapter 17. Appendix B T-Head Extended Instructions

Floating-point status bits NV, OF, and NX

Notes:

RM determines the round-off mode:

• 3’b000: Rounds off to the nearest even number. The corresponding assembler instruction is fsub.h
fd, fs1,fs2,rne.

• 3’b001: Rounds off to zero. The corresponding assembler instruction is fsub.h fd, fs1,fs2,rtz.

• 3’b010: Rounds off to negative infinity. The corresponding assembler instruction is fsub.h fd,
fs1,fs2,rdn.

• 3’b011: Rounds off to positive infinity. The corresponding assembler instruction is fsub.h fd,
fs1,fs2,rup.

• 3’b100: Rounds off to the nearest large value. The corresponding assembler instruction is fsub.h fd,
fs1,fs2,rmm.

• 3’b101: This code is reserved and not used.

• 3’b110: This code is reserved and not used.

• 3’b111: Dynamically rounds off based on the rm bit of the fcsr register. The corresponding assembler
instruction is fsub.h fd, fs1,fs2.

Instruction format:

www.t-head.cn 355

CHAPTER 18

Appendix C Control Registers

This section describes the M-mode control registers, S-mode control registers, and U-mode control registers.

18.1 Appendix C-1 M-mode control registers

M-mode control registers are classified by function into M-mode information registers, M-mode exception
configuration registers, M-mode exception handling registers, M-mode memory protection registers, M-mode
counter registers, and M-mode counter configuration registers.

18.1.1 M-mode information register group

18.1.1.1 Machine vendor ID register (mvendorid)

The mvendorid register stores the vendor IDs of T-Head Semiconductor Co., Ltd. It is not defined and the
values are all zero.

This register is 64 bits wide and is read-only in M-mode. Accesses in non-M-mode and writes in M-mode
will cause an illegal instruction exception.

18.1.1.2 Machine architecture ID register (marchid)

The marchid register stores the architecture IDs of CPU cores. It stores internal IDs of T-Head Semiconductor
Co., Ltd. and its reset value is subject to the product.

356

Chapter 18. Appendix C Control Registers

This register is 64 bits wide and is read-only in M-mode. Accesses in non-M-mode and writes in M-mode
will cause an illegal instruction exception.

18.1.1.3 Machine implementation ID register (mimpid)

The mimpid register stores hardware implementation IDs of CPU cores. This register is not implemented
by C908, and its read access value is 0.

This register is 64 bits wide and is read-only in M-mode. Accesses in non-M-mode and writes in M-mode
will cause an illegal instruction exception.

18.1.1.4 Machine hart ID register (mhartid)

The mhartid register stores hart IDs of CPU cores.

This register is 64 bits wide and is read-only in M-mode. Accesses in non-M-mode and writes in M-mode
will cause an illegal instruction exception.

18.1.2 M-mode exception configuration register group

18.1.2.1 Machine status register (mstatus)

The mstatus register stores status and control information of the CPU in M-mode, including the global
interrupt enable bit, exception preserve interrupt enable bit, and exception preserve privilege mode bit.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

Machine status register (mstatus)

SIE: supervisor interrupt enable bit

www.t-head.cn 357

Chapter 18. Appendix C Control Registers

• When SIE is 0, S-mode interrupts are invalid.

• When SIE is 1,S-mode interrupts are valid.

This bit is reset to 0 when the CPU is downgraded to the S-mode response interrupt, and is set to the value
of SPIE when the CPU exits the interrupt service program.

MIE: machine interrupt enable bit

• When MIE is 0, M-mode interrupts are invalid.

• When MIE is 1, M-mode interrupts are valid.

This bit is reset to 0 when the response is interrupted in M-mode on the CPU, and is set to the value of
MPIE when the CPU exits the interrupt service program.

SPIE: supervisor preserve interrupt enable bit

This bit stores the value of the SIE bit before the response is interrupted in S-mode on the CPU.

This bit will be reset to 0, and set to 1 when the CPU exits the interrupt service program.

MPIE: machine preserve interrupt enable bit

This bit stores the value of the MIE bit before the response is interrupted in M-mode on the CPU.

This bit will be reset to 0, and set to 1 when the CPU exits the interrupt exception service program.

SPP: supervisor preserve privilege bit

This bit stores the privilege status before the CPU accesses the exception service program in S-mode.

• When SPP is 2’b00, the CPU is in U-mode before accessing the exception service program.

• When SPP is 2’b01, the CPU is in S-mode before accessing the exception service program.

This bit will be reset to 2’b01.

MPP: machine preserve privilege bit

This bit stores the privilege status before the CPU accesses the exception service program in M-mode.

• When MPP is 2’b00, the CPU is in U-mode before entering the exception service program.

• When MPP is 2’b01, the CPU is in S-mode before accessing the exception service program.

• When MPP is 2’b11, the CPU is in M-mode before entering the exception service program.

This bit will be reset to 2’b11.

FS: floating-point status bit

This bit determines whether to store floating-point registers during context switching.

• When FS is 2’b00, the floating-point unit is in the Off state and exceptions will occur for accesses to
related floating-point registers.

• When FS is 2’b01, the floating-point unit is in the Initial state.

www.t-head.cn 358

Chapter 18. Appendix C Control Registers

• When FS is 2’b10, the floating-point unit is in the Clean state.

• When FS is 2’b11, the floating-point unit is in the Dirty state, which means the floating-point and
control registers have been modified.

XS: extension status bit

C908 has no extension units, and therefore this bit is fixed to 0.

MPRV: modify privilege mode

• When MPRV is 1, load and store requests are executed based on the privilege mode in MPP.

• When MPRV is 0, load and store requests are executed based on the current privilege mode of the
CPU.

SUM: allow S-mode accesses to U-mode virtual memory spaces

• When SUM is 1, load, storage, and value-taking requests can be initiated in S-mode to access U-mode
virtual memory spaces.

• When SUM is 0, load, storage, and value-taking requests cannot be initiated in S-mode to access virtual
memory spaces marked as U-mode.

MXR: allow accesses of load requests to memory spaces marked as executable

• When MXR is 1, accesses of load requests are allowed to virtual memory spaces marked as executable
or readable.

• When MXR is 0, accesses of load requests are allowed only to virtual memory spaces marked as
readable.

TVM: trap virtual memory

• When TVM is 1, an illegal instruction exception occurs for reads and writes to the satp control register
and for the execution of the sfence instruction in S-mode.

• When TVM is 0, reads and writes to the satp control register and the execution of the sfence instruction
are allowed in S-mode.

TW: timeout wait

• When TW is 1, an illegal instruction exception occurs if the WFI instruction is executed in S-mode.

• When TW is 0, the WFI instruction can be executed in S-mode.

TSR: trap sret

• When TSR is 1, an illegal instruction exception occurs if the sret instruction is executed in S-mode.

When TSR is 0, the sret instruction can be executed in S-mode.

VS: vector status bit

This bit determines whether to store vector registers during context switching.

www.t-head.cn 359

Chapter 18. Appendix C Control Registers

• When VS is 2’b00, the vector unit is in the Off state and exceptions will occur for accesses to related
vector registers.

• When VS is 2’b01, the vector unit is in the Initial state.

• When VS is 2’b10, the vector unit is in the Clean state.

• When VS is 2’b11, the vector unit is in the Dirty state, which means the vector registers and vector
control registers have been modified.

The VS bit is valid only when the vector execution unit is configured, and is always 0 if the vector execution
unit is not configured.

UXL: register width

This bit is read-only and always 2, which means the register is 64 bits wide in U-mode.

SXL: register width

This bit is read-only and always 2, which means the register is 64 bits wide in S-mode.

SD: dirty state sum bit of the floating-point, vector, and extension units

• When SD is 1, the floating-point unit, vector unit, or extension unit is in the Dirty state.

• When SD is 0, none of the floating-point, vector, and extension units is in the Dirty state.

18.1.2.2 M-mode instruction set architecture register (misa)

The misa register stores the features of the instruction set architecture supported by the CPU.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

C908 supports the RV64GC instruction set architecture, and the reset value of the MISA register is
0x800000000094112d. For more information about the assignment rules, see the official document of RISC-V
riscv-privileged.

C908 does not support the dynamic configuration of the MISA register. Writes to this register do not take
effect.

18.1.2.3 M-mode exception downgrade control register (medeleg)

The medeleg register can downgrade exceptions that occur in S-mode and U-mode to S-mode responses. The
lower 16 bits of the medeleg register are in one-to-one correspondence to exception vector tables. Exceptions
to be downgraded to S-mode responses can be selected.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

www.t-head.cn 360

Chapter 18. Appendix C Control Registers

18.1.2.4 M-mode interrupt downgrade control register (mideleg)

The mideleg register can downgrade S-mode interrupts to S-mode responses.

M-mode interrupt downgrade control register (mideleg)

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

18.1.2.5 M-mode interrupt-enable register (mie)

The mie register enables and masks different types of interrupts. This register is 64 bits wide and is readable
and writable in M-mode. Accesses in non-M-mode will cause an illegal instruction exception.

M-mode interrupt-enable register (mie)

SSIE: S-mode software interrupt enable bit

• When SSIE is 0, S-mode software external interrupts are invalid.

• When SSIE is 1, S-mode software external interrupts are valid.

MSIE: M-mode software interrupt enable bit

www.t-head.cn 361

Chapter 18. Appendix C Control Registers

• When MSIE is 0, M-mode software interrupts are invalid.

• When MSIE is 1, M-mode software interrupts are valid.

STIE: S-mode timer interrupt enable bit

• When STIE is 0, S-mode timer interrupts are invalid.

• When STIE is 1, S-mode timer interrupts are valid.

MTIE: M-mode timer interrupt enable bit

• When MTIE is 0, M-mode timer interrupts are invalid.

• When MTIE is 1, M-mode timer interrupts are valid.

SEIE: S-mode external interrupt enable bit

• When SEIE is 0, S-mode external interrupts are invalid.

• When SEIE is 1, S-mode external interrupts are valid.

MEIE: M-mode external interrupt enable bit

• When MEIE is 0, M-mode external interrupts are invalid.

• When MEIE is 1, M-mode external interrupts are valid.

MOIE: M-mode overflow interrupt enable bit

• When MOIE is 0, M-mode counter overflow interrupts are invalid.

• When MOIE is 1, M-mode counter overflow interrupts are valid.

18.1.2.6 M-mode trap vector base address register (mtvec)

The mtvec register stores the entry address of the exception service program.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

M-mode trap vector base address register (mtvec)

BASE: vector base address bit

The BASE bit indicates the upper 62 bits of the entry address of the exception service program. Combining
this base address with 2’b00 obtains the entry address of the exception service program.

www.t-head.cn 362

Chapter 18. Appendix C Control Registers

This bit will be reset to 0.

MODE: vector entry mode bit

• When MODE[1:0] is 2’b00, the base address is used as the entry address for both exceptions and
interrupts.

• When MODE[1:0] is 2’b01, the base address is used as the entry address for exceptions, and BASE
+ 4*cause is used as the entry address for interrupts.

18.1.2.7 M-mode counter access enable register (mcounteren)

The mcounteren register determines whether U-mode counters can be accessed in S-mode.

For more information, see ref:performance_test.

18.1.3 M-mode exception handling register group

18.1.3.1 M-mode scratch register (mscratch)

The mscratch register is used by the CPU to back up temporary data in the exception service program. It
is usually used to store the entry pointer to the local context space in M-mode.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

18.1.3.2 M-mode exception program counter register (mepc)

The mepc register stores the program counter value (PC value) when the CPU exits from the exception
service program. C908 supports 16 bits wide instructions. The MEPC value is aligned with 16 bits and the
lowest bit is 0.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

18.1.3.3 M-mode cause register (mcause)

The mcause register stores the vector numbers of events that trigger exceptions. The vector numbers are
used to handle corresponding events in the exception service program.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

www.t-head.cn 363

Chapter 18. Appendix C Control Registers

M-mode cause register (mcause)

Interrupt: interrupt bit

• When the Interrupt bit is 0, the corresponding exception is not triggered by an interrupt. The exception
code is parsed as an exception.

• When the Interrupt bit is 1, the corresponding exception is triggered by an interrupt. The exception
code is parsed as an interrupt.

Exception Code: exception vector number

When the CPU encounters an exception, the Exception Code bit will be updated to the value of the exception
source.

18.1.3.4 M-mode interrupt-pending register (mip)

The mip register stores information about pending interrupts. When the CPU cannot immediately respond
to an interrupt, the corresponding bit in the mip register will be set.

Writing the msip and ssip registers in the CLINT interrupt controller can trigger corresponding interrupts.
After the interrupts become valid, the msip bit and ssip bit can be queried based on the corresponding bits
in the mip register.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

M-mode interrupt-pending register (mip)

SSIP: supervisor software interrupt pending bit

www.t-head.cn 364

Chapter 18. Appendix C Control Registers

• When SSIP is 0, there is no pending S-mode software interrupt on the CPU.

• When SSIP is 1, there are pending S-mode software interrupts on the CPU.

The SSIP bit is readable and writable in M-mode. After it is delegated to S-mode, it is readable and writable
in S-mode. Otherwise, it is read-only in S-mode.

MSIP: M-mode software interrupt pending bit

• When MSIP is 0, there is no pending M-mode software interrupt on the CPU.

• When MSIP is 1, there are pending M-mode software interrupts on the CPU.

This bit is read-only.

STIP: S-mode timer interrupt pending bit

• When STIP is 0, there is no pending S-mode timer interrupt on the CPU.

• When STIP is 1, there are pending S-mode timer interrupts on the CPU.

MTIP: M-mode timer interrupt pending bit

• When MTIP is 0, there is no pending M-mode timer interrupt on the CPU.

• When MTIP is 1, there are pending M-mode timer interrupts on the CPU.

SEIP: S-mode external interrupt pending bit

• When SEIP is 0, there is no pending S-mode external interrupt on the CPU.

• When SEIP is 1, there are pending S-mode external interrupts on the CPU.

MEIP: machine external interrupt pending bit

• When MEIP is 0, there is no pending M-mode external interrupt on the CPU.

• When MEIP is 1, there are pending M-mode external interrupts on the CPU.

MOIP: M-mode overflow interrupt pending bit

• When MOIP is 0, there is no pending M-mode counter overflow interrupt on the CPU.

• When MOIP is 1, there are pending M-mode counter overflow interrupts on the CPU.

18.1.4 M-mode memory protection registers

M-mode memory protection registers are related to the settings of the memory protection unit.

18.1.4.1 Physical memory protection configuration register (pmpcfg)

The pmpcfg register configures access permissions and address matching mode for the physical memory.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

www.t-head.cn 365

Chapter 18. Appendix C Control Registers

For more information, see ref:physical_mem_pmpcfg.

18.1.4.2 Physical memory address register (pmpaddr)

The pmpaddr register configures the address range of each entry of the physical memory.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

For more information, see ref:physical_mem_pmpaddr.

18.1.5 M-mode counter registers

M-mode counter registers belong to the PMU and collect software and hardware information during a
program operation for software development personnel to optimize programs.

18.1.5.1 M-mode cycle counter (mcycle)

The mcycle counter stores the cycles executed by the CPU. When the CPU is in the execution state (non-low
power state), the mcycle register increases the count upon each execution cycle.

The mcycle counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_cont.

18.1.5.2 M-mode instructions-retired counter (minstret)

The minstret counter stores the number of retired instructions of the CPU. The minstret register increases
the count when each instruction retires.

The minstret counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_cont.

18.1.5.3 M-mode event counter (mhpmcountern)

The mhpmcountern counter counts events.

The mhpmcountern counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_cont.

18.1.6 M-mode counter configuration registers

The M-mode counter configuration register (mhpmeventn) selects events for M-mode event counters.

www.t-head.cn 366

Chapter 18. Appendix C Control Registers

18.1.6.1 M-mode event selector (mhpmeventn)

The events mhpmevent3-31 selected by the mhpmeventn register for M-mode event counters mhpmcounter3-
31 are in one-to-one correspondence. In C908, event counters can count only specified events. Therefore,
only specified values can be written to mhpmevent3-31.

The mhpmeventn counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_mhpmevent.

18.1.7 M-mode CPU control and status extension registers

C908 extends some registers for the CPU and status, including the M-mode extension status register (mxs-
tatus) and M-mode hardware control register (mhcr), M-mode hardware operation register (mcor), M-mode
L2 Cache control register (mccr2), M-mode implicit operation register (mhint), M-mode reset vector base ad-
dress register (mrvbr), S-mode counter write enable register (mcounterwen), M-mode event interrupt enable
register (mcounterinten), and M-mode event overflow mark register (mcounterof).

18.1.7.1 M-mode extension status register (mxstatus)

The mxstatus register stores the current privilege mode of the CPU and the enable bit of the extension
functions of C908.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

M-mode extension status register (mxstatus)

PMDU: U-mode performance monitoring count enable bit

When PMDU is 0, performance counters are allowed to count in U-mode.

www.t-head.cn 367

Chapter 18. Appendix C Control Registers

When PMDU is 1, performance counters are not allowed to count in U-mode.

PMDS: S-mode performance monitoring count enable bit

When PMDS is 0, performance counters are allowed to count in S-mode.

When PMDS is 1, performance counters are not allowed to count in S-mode.

PMDM: M-mode performance monitoring count enable bit

When PMDM is 0, performance counters are allowed to count in M-mode.

When PMDM is 1, performance counters are not allowed to count in M-mode.

PMP4K: PMP minimum granularity control bit

The minimum PMP granularity supported by C908 is 4 KB, which is not affected by this bit.

MM: misaligned access enable bit

When MM is 0, misaligned accesses are not supported and cause misaligned exceptions.

When MM is 1, misaligned accesses are supported and processed by hardware. (The default value of this
bit is 1 in C908.)

UCME: execute extended cache instructions in U-mode

When UCME is 0, extended cache instructions cannot be executed in U-mode. Otherwise, instruction
exceptions may occur.

When UCME is 1, extended cache instructions can be executed in U-mode.

CLINTEE: Clint timer/software interrupt supervisor extension enable bit

When CLINTEE is 0, supervisor software interrupts and timer interrupts initiated by Clint are not responded
to.

When CLINTEE is 1, supervisor software interrupts and timer interrupts initiated by Clint can be responded
to.

MHRD: disable hardware writeback

When MHRD is 0, hardware writeback is performed if the TLB is missing.

When MHRD is 1, hardware writeback is not performed after the TLB is missing.

INSDE: disable Icache snoop D-Cache

When INSDE is 0, D-Cache is snooped after I-Cache is missing.

When INSDE is 1, D-Cache is not snooped after I-Cache is missing.

MAEE: extend MMU address attribute

When MAEE is 0, the MMU address attribute is not extended.

When MAEE is 1, the address attribute is extended in the PTE of the MMU. Users can configure the address
attribute of pages.

www.t-head.cn 368

Chapter 18. Appendix C Control Registers

THEADISAEE: enables extended instruction sets

When THEADISAEE is 0, using C908 extended instruction sets causes instruction exceptions.

When THEADISAEE is 1, C908 extended instruction sets can be used.

PM: privilege mode

When PM is 2’b00, the CPU is running in U-mode.

When PM is 2’b01, the CPU is running in S-mode.

When PM is 2’b11, the CPU is running in M-mode. (The PM bit will be reset to M-mode.)

18.1.7.2 M-mode hardware configuration register (mhcr)

The mhcr register configures the performance and functions of the CPU.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

M-mode hardware configuration register (mhcr)

IE: I-Cache enable bit

When IE is 0, I-Cache is disabled.

When IE is 1, I-Cache is enabled.

DE: D-Cache enable bit

When DE is 0, D-Cache is disabled.

When DE is 1, D-Cache is enabled.

WA: cache write allocate set bit

When WA is 0, the data cache is in write non-allocate mode.

When WA is 1, the data cache is in write allocate mode.

WB: cache writeback set bit

www.t-head.cn 369

Chapter 18. Appendix C Control Registers

When WB is 0, the data cache is in write-through mode.

When WB is 1, the data cache is in writeback mode.

C908 supports only the writeback mode. Therefore, the WB bit is fixed to 1.

RS: address return stack set bit

When RS is 0, the return stack is disabled.

When RS is 1, the return stack is enabled.

BPE: branch prediction enable bit

When BPE is 0, branch prediction is disabled.

When BPE is 1, branch prediction is enabled.

BTB: branch target prediction enable bit

When BTB is 0, branch target prediction is disabled.

When BTB is 1, branch target prediction is enabled.

IBPE: indirect branch prediction enable bit

When IBPE is 0, indirect branch prediction is disabled.

When IBPE is 1, indirect branch prediction is enabled.

WBR: write burst transmission enable bit

When WBR is 0, write burst transmission is not supported.

When WBR is 1, write burst transmission is supported.

The WBR bit is fixed to 1 by default in C908, and cannot be modified.

L0BTB: level-1 branch target prediction enable bit

When L0BTB is 0, level-1 branch target prediction is disabled.

When L0BTB is 1, level-1 branch target prediction is enabled.

SCK: ratio of system clock to CPU clock

This bit indicates the ratio of the system clock to the CPU clock. The calculation format is SCK+1. There
are corresponding pins on the CPU. The SCK bit is configured during a reset and cannot be modified later.

18.1.7.3 M-mode hardware operation register (mcor)

The mcor register performs related operations on caches and branch predictors.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

www.t-head.cn 370

Chapter 18. Appendix C Control Registers

M-mode hardware operation register (mcor)

CACHE_SEL: cache select bit

When CACHE_SEL is 2’b01, the instruction cache is selected.

When CACHE_SEL is 2’b10, the data cache is selected.

When CACHE_SEL is 2’b11, the instruction and data caches are selected.

INV: cache invalidate bit

When INV is 0, caches are not invalidated.

When INV is 1, caches are invalidated.

CLR: dirty entry clear bit

When CLR is 0, dirty entries in caches are not written out of the chip.

When CLR is 1, dirty entries in caches are written out of the chip.

BHT_INV: BHT invalidate bit

When BHT_INV is 0, data in branch history tables (BHTs) is not invalidated.

When BHT_INV is 1, data in BHTs is invalidated.

BTB_INV: BTB invalidate bit

When BTB_INV is 0, data in branch target buffers (BTBs) is not invalidated.

When BTB_INV is 1, data in BTBs is invalidated.

IBP_INV: IBP invalidate bit

When IBP_INV is 0, indirect branch prediction (IBP) data is not invalidated.

When IBP_INV is 1, IBP data is invalidated.

All the preceding invalidate and dirty entry clear bits are set to 1 when corresponding operations are in
progress and reset to 0 when the operations are completed.

www.t-head.cn 371

Chapter 18. Appendix C Control Registers

18.1.7.4 M-mode L2 Cache control register (mccr2)

The mccr2 register configures the access delays of memories in the shared L2 Cache, including L2 Cache
enable/disable, instruction prefetch, and TLB prefetch enable.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an illegal instruction exception.

M-mode L2 Cache control register (mccr2)

RFE: read allocation enable bit

When RFE is 0, if accessed data is missing in the L2 Cache, the data is not written back to the L2 Cache.

When RFE is 1, if accessed data is missing in the L2 Cache, the data is written back to the L2 Cache.

L2EN: L2 Cache enable bit

When L2EN is 0, the L2 Cache is disabled.

When L2EN is 1, the L2 Cache is enabled. (This bit is fixed to 1 in C908.)

DLTNCY: data RAM access cycle configure bit for the L2 Cache

When DLTNCY is 0, the data RAM access cycle is 1.

When DLTNCY is 1, the data RAM access cycle is 2.

When DLTNCY is 2, the data RAM access cycle is 3.

When DLTNCY is 3, the data RAM access cycle is 4.

When DLTNCY is 4, the data RAM access cycle is 5.

When DLTNCY is 5, the data RAM access cycle is 6.

When DLTNCY is 6, the data RAM access cycle is 7.

When DLTNCY is 7, the data RAM access cycle is 8.

DSETUP: data RAM setup configure bit for the L2 Cache

When DSETUP is 0, the data RAM does not require an additional setup cycle.

www.t-head.cn 372

Chapter 18. Appendix C Control Registers

When DSETUP is 1, the data RAM requires an additional setup cycle.

TLTNCY: tag RAM access cycle configure bit for the L2 Cache

When TLTNCY is 0, the tag RAM access cycle is 1.

When TLTNCY is 1, the tag RAM access cycle is 2.

When TLTNCY is 2, the tag RAM access cycle is 3.

When TLTNCY is 3, the tag RAM access cycle is 4.

When TLTNCY is 4, the tag RAM access cycle is 5.

TSETUP: tag RAM setup configure bit for the L2 Cache

When TSETUP is 0, the tag RAM does not require an additional setup cycle.

When TSETUP is 1, the tag RAM requires an additional setup cycle.

IPRF: instruction prefetch capability of the L2 Cache

This bit indicates the number of prefetched cache lines when desired data of a value-taking request is missing
in the L2 Cache.

When IPRF is 0, instruction prefetch is disabled for the L2 Cache.

When IPRF is 1, one cache line is prefetched.

When IPRF is 2, two cache lines are prefetched.

When IPRF is 3, three cache lines are prefetched.

TPRF: TLB prefetch enable bit for the L2 Cache

When TPRF is 0, TLB prefetch is disabled for the L2 Cache.

When TPRF is 1, TLB prefetch is enabled for the L2 Cache.

18.1.7.5 M-mode implicit operation register (mhint)

The mhint register controls the enable/disable of multiple functions of caches.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

M-mode implicit operation register (mhint)

DPLD: D-Cache prefetch enable bit

When DPLD is 0, D-Cache prefetch is disabled.

When DPLD is 1, D-Cache prefetch is enabled.

AMR: write allocate policy automatic adjustment enable bit for the L1 Cache

www.t-head.cn 373

Chapter 18. Appendix C Control Registers

When AMR is 0, the write allocate policy is subject to the page attribute WA of the access address.

When AMR is 1, if multiple cache lines are stored continuously, desired data of subsequent storage operations
of continuous addresses is no longer written to the L1 Cache.

IPLD: I-Cache prefetch enable bit

When IPLD is 0, I-Cache prefetch is disabled.

When IPLD is 1, I-Cache prefetch is enabled.

LPE: loop acceleration enable bit

When LPE is 0, loop acceleration is disabled.

When LPE is 1, loop acceleration is enabled.

IWPE: I-Cache way prediction enable bit

When IWPE is 0, way prediction is disabled for I-Cache.

When IWPE is 1, way prediction is enabled for I-Cache.

SRE: single retirement enable bit

When SRE is 0, single retirement mode is disabled.

When SRE is 1, single retirement mode is enabled.

D_DIS: number of prefetched cache lines in D-Cache

When D_DIS is 0, two cache lines are prefetched.

When D_DIS is 1, four cache lines are prefetched.

When D_DIS is 2, eight cache lines are prefetched.

When D_DIS is 3, 16 cache lines are prefetched.

The default value is 0.

www.t-head.cn 374

Chapter 18. Appendix C Control Registers

L2PLD: the L2 Cache prefetch enable bit

When L2PLD is 0, L2 Cache prefetch is disabled.

When L2PLD is 1, L2 Cache prefetch is enabled.

L2_DIS: number of prefetched cache lines in the L2 Cache

When L2_DIS is 0, eight cache lines are prefetched.

When L2_DIS is 1, 16 cache lines are prefetched.

When L2_DIS is 2, 32 cache lines are prefetched.

When L2_DIS is 3, 64 cache lines are prefetched.

The L2 Cache prefetch is based on the L1 Cache prefetch.

NO_SPEC: spec fail prediction enable bit

When NO_SPEC is 0, spec fail prediction is disabled.

When NO_SPEC is 1, spec fail prediction is enabled.

L2STPLD: store prefetch enable bit for the L2 Cache

When L2STPLD is 0, store prefetch is disabled for the L2 Cache.

When L2STPLD is 1, store prefetch is enabled for the L2 Cache.

TLB_BROAD_DIS: the TLB fence operation broadcast disable bit

When TLB_BROAD_DIS is 0, sfence.vma instruction operations are broadcast to other cores.

When TLB_BROAD_DIS is 1, sfence.vma instruction operations are not broadcast.

This bit is invalid when there is only one core.

FENCERW_BROAD_DIS: fence operation broadcast disable bit

When FENCERW_BROAD_DIS is 0, fence instruction operations are broadcast to other cores.

When FENCERW_BROAD_DIS is 1, fence instruction operations are not broadcast.

This bit is invalid when there is only one core.

FENCEI_BROAD_DIS: fence.i operation broadcast disable bit

When FENCEI_BROAD_DIS is 0, fence.i instruction operations are broadcast to other cores.

When FENCEI_BROAD_DIS is 1, fence.i instruction operations are not broadcast.

This bit is invalid when there is only one core.

18.1.7.6 M-mode reset vector base address register (mrvbr)

The mrvbr register stores base addresses of reset exception vectors. Each C908 core has an independent
mrvbr register.

www.t-head.cn 375

Chapter 18. Appendix C Control Registers

This register is 64 bits wide and is read-only in M-mode. Accesses in non-M-mode will cause an illegal
instruction exception.

M-mode reset vector base address register (mrvbr)

Reset vector base: reset base address

It controls the reset base address of a core.

18.1.7.7 S-mode counter write enable register (mcounterwen)

The mcounterwen register determines whether S-mode event counters can be written in S-mode.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

S-mode counter write enable register (mcounterwen)

When mcounterwen.bit[n] is 1, writes to the corresponding shpmcounter are allowed in S-mode.

When mcounterwen.bit[n] is 0, writes to the corresponding shpmcounter are not allowed in S-mode, and
cause instruction exceptions.

18.1.7.8 M-mode event interrupt enable register (mcounterinten)

The mcounterinten register enables the triggering of interrupts when event counters overflow.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

www.t-head.cn 376

Chapter 18. Appendix C Control Registers

M-mode event interrupt enable register (mcounterinten)

When mcounterinten.bit[n] is 1, an interrupt is triggered when the corresponding mhpmcounter overflows.

When mcounterinten.bit[n] is 0, an interrupt is not triggered when the corresponding mhpmcounter overflows.

18.1.7.9 M-mode event overflow mark register (mcounteren)

The mcounteren register marks whether event counters overflow.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

M-mode event overflow mark register (mcounteren)

When mcounterof.bit[n] is 1, the corresponding mhpmcounter overflows.

When mcounterof.bit[n] is 0, the corresponding mhpmcounter does not overflow.

18.1.8 M-mode cache access extension registers

M-mode cache access extension registers directly read content in the L1 Cache and the L2 Cache for cache
debugging.

www.t-head.cn 377

Chapter 18. Appendix C Control Registers

18.1.8.1 M-mode cache instruction register (mcins)

The mcins register initiates read requests to the L1 or L2 Cache.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

M-mode cache instruction register (mcins)

R: cache read access

• When R is 0, cache read requests are not initiated.

• When R is 1, cache read requests are initiated.

18.1.8.2 M-mode cache access index register (mcindex)

The mcindex register configures the location of a cache accessed by read requests.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

M-mode cache access index register (mcindex)

RID: RAM flag bit

This bit specifies the accessed RAM.

• When RID is 0, I-Cache tag RAM is accessed.

• When RID is 1, I-Cache data RAM is accessed.

• When RID is 2, D-Cache tag RAM is accessed.

• When RID is 3, D-Cache data RAM is accessed.

• When RID is 4, L2 Cache tag RAM is accessed.

www.t-head.cn 378

Chapter 18. Appendix C Control Registers

• When RID is 5, L2 Cache data RAM is accessed.

• When RID is 12, D-Cache LD tag RAM is accessed.

WAY: cache way information

This bit specifies the RAM access way.

INDEX: cache index

This bit specifies the RAM access index.

18.1.8.3 M-mode cache data register (mcdata0/1)

The mcdata0/1 register records data read from the L1 or L2 Cache.

This register is 64 bits wide and is readable and writable in M-mode. Accesses in non-M-mode will cause an
illegal instruction exception.

M-mode cache access data register (mcdata)

Table 18.1: Correspondence between cache data content and RAM
types

RAM type CDATA content
ICACHE TAG CDATA0[39:12]: TAG

CDATA0[0]: VALID
ICACHE DATA CDATA0–CDATA1: 128bit DATA
DCACHE TAG CDATA0[39:12]: TAG

CDATA0[2]: DIRTY
CDATA0[1]: SHARED
CDATA0[0]: VALID

DCACHE DATA CDATA0–CDATA1: 128bit DATA
L2CACHE TAG CDATA0[39:12]: TAG

CDATA[1]: DIRTY
CDATA0[0]: VALID

L2CACHE
DATA

CDATA0–CDATA1: 128bit DATA

18.1.9 M-mode CPU model registers

www.t-head.cn 379

Chapter 18. Appendix C Control Registers

18.1.9.1 M-mode CPU model register (mcpuid)

The mcpuid registers store CPU models. The reset value is subject to the product.

18.1.9.2 On-chip bus base address register (mapbaddr)

The mapbaddr register stores the base addresses of on-chip registers (CLINT and PLIC) of the CPU. The
value of this register is subject to hardware integration.

18.1.10 Multi-core extension registers

18.1.10.1 Snoop listening enable register (msmpr)

The msmpr register controls whether cores can process listening requests. The listening request processing
capability is configured for each core separately. The consistency bus of the L2 subsystem controls the
sending of listening requests based on the listening status of each core. This register is readable and writable
in M-mode.

The msmpr register is 64 bits wide. Only bit 0 is defined and the other bits are reserved.

Bit 0: SMPEN: core listening enable bit

• When SMPEN is 1’b0, the corresponding core cannot process listening requests, and the L2 subsystem
masks the listening requests bound for the core. (This is the reset value.)

• When SMPEN is 1’b1, the corresponding core can process listening requests, and the L2 subsystem
sends the listening requests bound for the core.

Before a CPU core is powered off, its SMPEN bit must be set to 0 to disable listening. After a core is
powered on, its SMPEN bit must be set to 1 before D-Cache and MMU are enabled. The SMPEN bit must
be set to 1 when a core runs properly (including WFI mode). Otherwise, unexpected results may be caused.

18.2 Appendix C-2 S-mode control registers

S-mode control registers are classified by function into S-mode exception configuration registers, S-mode
exception handling registers, and S-mode address translation registers.

18.2.1 S-mode exception configuration registers

When exceptions and interrupts are downgraded to S-mode responses, exceptions must be configured through
the S-mode exception configuration registers, like in M-mode.

www.t-head.cn 380

Chapter 18. Appendix C Control Registers

18.2.1.1 S-mode status register (sstatus)

The sstatus register stores status and control information of the CPU in S-mode, including the global
interrupt enable bit, exception preserve interrupt enable bit, and exception preserve privilege mode bit. The
sstatus register is a partial mapping of the mstatus register.

This register is 64 bits wide and is readable and writable in S-mode. Accesses in U-mode will cause an illegal
instruction exception.

S-mode status register (sstatus)

For more information, see ref:appendix_c12_mstatus.

18.2.1.2 S-mode interrupt-enable register (sie)

The sie register controls the enable and mask of different types of interrupts, and is a partial mapping of
the mie register. This register is 64 bits wide and readable in S-mode. The write permission in S-mode
is determined by the mideleg register of the corresponding bit. Accesses in U-mode will cause an illegal
instruction exception.

S-mode interrupt-enable register (sie)

For more information, see ref:appendix_c12_mie.

www.t-head.cn 381

Chapter 18. Appendix C Control Registers

18.2.1.3 S-mode trap vector base address register (stvec)

The stvec register stores the entry address of the exception service program.

This register is 64 bits wide and is readable and writable in S-mode. Accesses in U-mode will cause an illegal
instruction exception.

S-mode trap vector base address register (stvec)

For more information, see ref:appendix_c12_mtvec.

18.2.1.4 S-mode counter access enable register (scounteren)

The scounteren register determines whether U-mode counters can be accessed in U-mode.

For more information, see ref:performance_test_scounteren.

18.2.2 S-mode exception handling registers

18.2.2.1 S-mode scratch register (sscratch)

The sscratch register is used by the CPU to back up temporary data in the exception service program. It is
usually used to store the entry pointer to the local context space in S-mode.

This register is 64 bits wide and is readable and writable in S-mode. Accesses in U-mode will cause an illegal
instruction exception.

18.2.2.2 S-mode exception program counter register (sepc)

The sepc register stores the program counter value (PC value) when the CPU exits from the exception
service program. C908 supports 16 bits wide instructions. The values of sepc are aligned with 16 bits and
the lowest bit is 0.

This register is 64 bits wide and is readable and writable in S-mode. Accesses in U-mode will cause an illegal
instruction exception.

www.t-head.cn 382

Chapter 18. Appendix C Control Registers

18.2.2.3 S-mode cause register (scause)

The scause register stores the vector numbers of events that trigger exceptions. The vector numbers are used
to handle corresponding events in the exception service program.

This register is 64 bits wide and is readable and writable in S-mode. Accesses in U-mode will cause an illegal
instruction exception.

18.2.2.4 S-mode interrupt-pending register (sip)

The sip register stores information about pending interrupts. When the CPU cannot immediately respond
to an interrupt, the corresponding bit in the sip register will be set.

This register is 64 bits wide and readable in S-mode. The write permission is determined by the mideleg
register of the corresponding bit. Accesses in U-mode will cause an illegal instruction exception.

S-mode interrupt-pending register (sip)

18.2.3 S-mode address translation registers

Virtual memory spaces need to be accessed in S-mode. The S-mode address translation register (satp)
controls MMU mode switching, hardware writeback base address, and process ID.

18.2.3.1 S-mode address translation register (satp)

The S-mode address translation register (satp) controls MMU mode switching, hardware writeback base
address, and process ID.

This register is 64 bits wide and is readable and writable in S-mode. Accesses in U-mode will cause an illegal
instruction exception.

For more information, see ref:virtual_mem_manage_satp.

www.t-head.cn 383

Chapter 18. Appendix C Control Registers

18.2.4 S-mode CPU control and status extension registers

18.2.4.1 S-mode extension status register (sxstatus)

The sxstatus register is the mapping of the mxstatus register. For more information, see
ref:appendix_c17_mxstatus.

This register is 64 bits wide and is readable in S-mode. Only the MM bit is writable. Accesses in U-mode
will cause an illegal instruction exception.

18.2.4.2 S-mode hardware control register (shcr)

The shcr register is the mapping of the mhcr register. For more information, see ref:appendix_c17_mhcr.

This register is 64 bits wide and is readable in S-mode. Accesses in U-mode will cause an illegal instruction
exception.

18.2.4.3 S-mode event overflow interrupt enable register (scounterinten)

The scounterinten register is the mapping of the mcounterinten register. For more information, see
ref:appendix_c17_mcounterinten.

This register is 64 bits wide and is readable in S-mode. Accesses in U-mode will cause an illegal instruction
exception.

When mcounterwen.bit[n] is 1, scounterinten.bit[n] determines whether to generate an interrupt when the
corresponding shpmcounter overflows.

18.2.4.4 S-mode event overflow mark register (scounterof)

The scounterof register is the mapping of the mcounterof register. For more information, see
ref:appendix_c17_mcounterof.

This register is 64 bits wide and is readable in S-mode. Accesses in U-mode will cause an illegal instruction
exception.

When mcounterwen.bit[n] is 1, scounterof.bit[n] indicates whether the corresponding shpmcounter overflows.

18.2.4.5 S-mode cycle counter (scycle)

The scycle counter stores the cycles executed by the CPU. When the CPU is in the execution state (non-low
power state), the scycle register increases the count upon each execution cycle.

The mcycle counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_cont.

www.t-head.cn 384

Chapter 18. Appendix C Control Registers

18.2.4.6 S-mode instructions-retired counter (sinstret)

The sinstret counter stores the number of retired instructions of the CPU. The sinstret register increases the
count when each instruction retires.

The sinstret counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_cont.

18.2.4.7 S-mode event counter (shpmcountern)

The shpmcountern counter is the mapping of the mhpmcountern counter.

For more information, see ref:performance_test_cont.

18.2.5 S-mode MMU extension register

C908 extends MMU related registers to implement software writeback. Software can directly write and read
the TLB.

18.2.5.1 S-mode MMU control register (smcir)

This register is 64 bits wide and is readable in S-mode. Accesses in U-mode will cause an illegal instruction
exception.

For more information, see ref:virtual_mem_manage_smcir.

18.2.5.2 S-mode MMU control register (smir)

This register is 64 bits wide and is readable in S-mode. Accesses in U-mode will cause an illegal instruction
exception.

For more information, see ref:virtual_mem_manage_smir.

18.2.5.3 S-mode MMU control register (smeh)

This register is 64 bits wide and is readable in S-mode. Accesses in U-mode will cause an illegal instruction
exception.

For more information, see ref:virtual_mem_manage_smeh.

www.t-head.cn 385

Chapter 18. Appendix C Control Registers

18.2.5.4 S-mode MMU control register (smel)

This register is 64 bits wide and is readable in S-mode. Accesses in U-mode will cause an illegal instruction
exception.

For more information, see ref:virtual_mem_manage_smel.

18.3 Appendix C-3 U-mode control registers

U-mode control registers are classified by function into floating-point registers, counter registers, and vector
control registers.

18.3.1 U-mode floating-point control registers

18.3.1.1 Floating-point accrued exceptions register (fflags)

The fflags register is the mapping of accrued exceptions of the fcsr register. For more information, see
ref:appendix_c31_fcsr.

18.3.1.2 Floating-point dynamic rounding mode register (frm)

The frm register is the mapping of the rounding mode of the fcsr register. For more information, see
ref:appendix_c31_fcsr.

18.3.1.3 Floating-point control and status register (fcsr)

The fcsr register records floating-point accrued exceptions and the rounding mode.

This register is 64 bits wide and readable and writable in any mode.

Floating-point control and status register (fcsr)

NX: imprecise exception

www.t-head.cn 386

Chapter 18. Appendix C Control Registers

• When NX is 0, no imprecise exception occurs.

When NX is 1, imprecise exceptions occur.

UF: underflow exception

• When UF is 0, no underflow exception occurs.

• When UF is 1, underflow exceptions occur.

OF: overflow exception

• When OF is 0, no overflow exception occurs.

• When OF is 1, overflow exceptions occur.

DZ: division by zero exception

• When DZ is 0, no division by zero exception occurs.

• When DZ is 1, division by zero exceptions occur.

NV: illegal instruction operand exception

• When NV is 0, no exception of illegal instruction operands occurs.

• When NV is 1, exceptions of illegal instruction operands occur.

RM: rounding mode

• When RM is 0, the RNE rounding mode takes effect, and values are rounded off to the nearest even
number.

• When RM is 1, the RTZ rounding mode takes effect, and values are rounded off to zero.

• When RM is 2, the RDN rounding mode takes effect, and values are rounded off to negative infinity.

• When RM is 3, the RUP rounding mode takes effect, and values are rounded off to positive infinity.

• When RM is 4, the RMM rounding mode takes effect, and values are rounded off to the nearest number.

VXSAT: vector overflow flag bit

This register is the mapping of the corresponding bit.

VXRM: vector rounding mode bit

This register is the mapping of the corresponding bit.

18.3.2 U-mode counter/timer registers

18.3.2.1 User cycle register (cycle)

The cycle register stores the cycles executed by the CPU. When the CPU is in the execution state (non-low
power state), the cycle register increases the count upon each execution cycle.

www.t-head.cn 387

Chapter 18. Appendix C Control Registers

The mcycle counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_cont.

18.3.2.2 U-mode timer register (time)

The time register is the read-only mapping of the mtime register.

For more information, see ref:performance_test_cont.

18.3.2.3 User instructions-retired counter (instret)

The instret counter stores the number of retired instructions of the CPU. The instret register increases the
count when each instruction retires.

The sinstret counter is 64 bits wide and will be reset to 0.

For more information, see ref:performance_test_cont.

18.3.2.4 User event counter (hpmcountern)

The hpmcountern counter is the mapping of the mhpmcountern counter.

For more information, see ref:performance_test_cont.

18.3.3 U-mode floating-point extension control registers

18.3.3.1 U-mode floating-point extension control register (fxcr)

The fxcr register controls the floating-point extension function and floating-point exception accrue bit.

Floating-point extension control register (fxcr)

NX: imprecise exception

It is the mapping of the corresponding bit of the fcsr register.

UF: underflow exception

www.t-head.cn 388

Chapter 18. Appendix C Control Registers

It is the mapping of the corresponding bit of the fcsr register.

OF: overflow exception

It is the mapping of the corresponding bit of the fcsr register.

DZ: division by zero exception

It is the mapping of the corresponding bit of the fcsr register.

NV: illegal instruction operand exception

It is the mapping of the corresponding bit of the fcsr register.

FE: floating-point exception accrue bit

This bit is set to 1 when any floating-point exception occurs.

DQNaN: output QNaN mode bit

When DQNaN is 0, the output QNaN value is the default value.

When DQNaN is 1, the output QNaN value is consistent with the IEEE754 standard.

RM: rounding mode

It is the mapping of the corresponding bit of the fcsr register.

18.3.4 Vector extension registers

18.3.4.1 Vector start position register (vstart)

The vstart register specifies the position of the start element when a vector instruction is executed. The
vstart bit will be reset to 0 after each vector instruction is executed.

18.3.4.2 Fixed-point overflow flag bit register (vxsat)

The vxsat register specifies whether any fixed-point instruction overflows.

18.3.4.3 Fixed-point rounding mode register (vxrm)

The vxrm register specifies the rounding mode used by fixed-point instructions.

Fixed-point rounding mode register (vxrm)

RM: fixed-point rounding mode

www.t-head.cn 389

Chapter 18. Appendix C Control Registers

• When RM is 0, the RNU rounding mode takes effect, and values are rounded off to a large number.

• When RM is 1, the RNE rounding mode takes effect, and values are rounded off to an even number.

• When RM is 2, the RDN rounding mode takes effect, and values are rounded off to zero.

• When RM is 3, the ROD rounding mode takes effect, and values are rounded off to an odd number.

18.3.4.4 Vector length register (vl)

The vl register specifies the range of the destination register to be updated by a vector instruction. The
vector instruction updates the elements with a sequence number smaller than the vl register value in the
destination register, and clears those with a sequence number greater than the vl register value. Particularly,
when vstart >= vl or vl is 0, all elements in the destination register are not updated.

This register is read-only in any mode, but its value can be updated by using the vsetvli, vsetvl, and
fault-only-first instructions.

18.3.4.5 Vector data type register (vtype)

The vtype register specifies the data type and elements of the vector registers.

Fixed-point type register (vtype)

This register is read-only in any mode, but its value can be updated by using the vsetvli and vsetvl instruc-
tions.

VLL: valid operation flag bit

This bit is set only when the vsetvli/vsetvl instruction updates the vtype register with a value not supported
by C908. Otherwise, it is 0. When this bit is set, the execution of vector instructions will cause an illegal
instruction exception.

VEDIV: EDIV extension enable bit

C908 does not support EDIV extensions. Therefore, the EDIV bit is 0.

VSEW: vector element width set bit

www.t-head.cn 390

Chapter 18. Appendix C Control Registers

The VSEW bit determines the standard vector element width (SEW). The vector element widths supported
by C908 are shown in : numref:Vector_element_bit_width.

Table 18.2: Vector element widths

VSEW[2:0] Element width
0 0 0 8
0 0 1 16
0 1 0 32
0 1 1 64

When VSEW takes other values, executing C908 vector instructions causes instruction exceptions.

VLMUL: vector register group bit

Multiple vector registers can form a vector register group. Vector instructions act on all vector registers in
the register group. VLMUL specifies the number of vector registers in the vector register group, as shown
in :numref: num_vector_register_group.

Table 18.3: Number of registers in the vector register group

VLMUL[1:0] LMUL
0 0 1
0 1 2
1 0 4
1 1 8

18.3.4.6 Vector width (unit: byte) register (vlenb)

The vlenb register specifies the vector width of the CPU, in bytes.

The vector width of C908 is 128 bits (VLEN=128). Therefore, VLENB = 128/8 = 16.

18.4 Appendix C-4 Additional Register description

Machine Trap Value Register (MTVAL)

The mtval register is an 64-bit read-write register formatted as shown in Figure Fig. 18.1, when a trap
is taken into M-mode, mtval is either set to zero or written with exception-specific information to assist
software in handling the trap.

This register is readable and writable in M-mode. Accesses in non-M-mode will cause an illegal instruction
exception.

Supervisor Trap Value Register (STVAL)

www.t-head.cn 391

Chapter 18. Appendix C Control Registers

The stval register is an 64-bit read-write register formatted as shown in Figure Fig. 18.2, when a trap is
taken into S-mode, stval is written with exception-specific information to assist software in handling the
trap.

This register is readable and writable in S-mode. Accesses in U-mode will cause an illegal instruction
exception.

Fig. 18.1: mtval

Fig. 18.2: stval

Vector extension register file

Vector Start Index(vstart)

The vstart read-write CSR specifies the index of the first element to be executed by a vector instruction.

Normally, vstart is only written by hardware on a trap on a vector instruction, with the vstart value
representing the element on which the trap was taken (either a synchronous exception or an asynchronous
interrupt), and at which execution should resume after a resumable trap is handled.

All vector instructions are defined to begin execution with the element number given in the vstart CSR,
leaving earlier elements in the destination vector undisturbed, and to reset the vstart CSR to zero at the
end of execution.

Vector Fixed-Point Saturation Flag (vxsat)

The vxsat CSR holds a single read-write bit that indicates if a fixed-point instruction has had to saturate
an output value to fit into a destination format.

The vxsat bit is mirrored in the upper bits of fcsr.

Vector Fixed-Point Rounding Mode Register vxrm

The vector fixed-point rounding-mode register holds a two-bit read-write rounding-mode field. The vector
fixed-point rounding-mode is given a separate CSR address to allow independent access.

RM:rounding mode

www.t-head.cn 392

Chapter 18. Appendix C Control Registers

Fig. 18.3: VXRM

• when RM is 0, the RNU rounding mode takes effect, and values are rounded to nearest up.

• when RM is 1, the RNE rounding mode takes effect, and values are rounded to nearest even.

• when RM is 2, the RDN rounding mode takes effect, and values are rounded down.

• when RM is 3, the ROD rounding mode takes effect, and values are rounded to odd.

Vector Length Register vl

The 64-bit-wide read-only vl CSR can only be updated by the vsetvli and vsetvl instructions, and the
fault-only-first vector load instruction variants.

The vl register holds an unsigned integer specifying the number of elements to be updated by a vector
instruction. Elements in any destination vector register group with indices � vl are unmodified during
execution of a vector instruction. When vstart � vl, no elements are updated in any destination vector
register group.

Vector type register (vtype)

The read-only 64bit-wide vector type CSR, vtype provides the default type used to interpret the contents of
the vector register file, and can only be updated by vsetvl{i} instructions. The vector type also determines
the organization of elements in each vector register, and how multiple vector registers are grouped.

In the base vector extension, the vtype register has three _elds, vill, vsew[2:0], and vlmul[1:0].

Table. vtype register layout

Bits Name Description
63 vill Illegal value if set
62:7 Reserved (write 0)
6:5 vediv[1:0] Used by EDIV extension
4:2 vsew[2:0] Standard element width (SEW) setting
1:0 vlmul[1:0] Vector register group multiplier (LMUL) setting

Vill: Vector Type Illegal

The vill bit is used to encode that a previous vsetvl{i} instruction attempted to write an unsupported
value to vtype. If the vill bit isset, then any attempt to execute a vector instruction (other than a vector
configuration instruction) will raise an illegal instruction exception. When the vill bit is set, the other 63
bits in vtype shall be zero.

www.t-head.cn 393

Chapter 18. Appendix C Control Registers

VEDIV: EDIV extension enable

The vediv[1:0] field is used by the EDIV extension described below. C910 does not support EDIV extension,
this field is fix to 0.

Vsew: Vector standard element width

The value in vsew sets the dynamic standard element width (SEW). By default, a vector register is viewed
as being divided into VLEN / SEW standard-width elements. In the base vector extension, only SEW up
to max(XLEN,FLEN) are required to be supported.

VSEW[2:0] SEW
0 0 0 8
0 0 1 16
0 1 0 32
0 1 1 64

VLMUL: Vector Register Grouping

Multiple vector registers can be grouped together, so that a single vector instruction can operate on multiple
vector registers. Vector register groups allow double-width or larger elements to be operated on with the same
vector length as standard-width elements. Vector register groups also provide greater execution efficiency
for longer application vectors.

The term vector register group is used herein to refer to one or more vector registers used as a single operand
to a vector instruction. The number of vector registers in a group, LMUL, is an integer power of two set by
the vlmul field in vtype (LMUL = 2vlmul[1:0]).

The derived value VLMAX = LMUL*VLEN/SEW represents the maximum number of elements that can
be operated on with a single vector instruction given the current SEW and LMUL settings.

vlmul[1:0] LMUL
0 0 1
0 1 2
1 0 4
1 1 8

Vector Byte Length vlenb

The 64-bit-wide read-only CSR vlenb holds the value VLEN/8, i.e., the vector register length in bytes.

www.t-head.cn 394

CHAPTER 19

Program Examples

This chapter describes various program examples, including the MMU setting example, PMP setting ex-
ample, cache setting example, multi-core startup example, synchronization primitive example, PLIC setting
example, and PMU setting example.

19.1 Optimal CPU performance configuration

The optimal performance of C908 can be achieved by using the following configurations:

• MHCR = 0x11ff

• MHINT = 0x6e30c

• MCCR2 = 0xe0000009 (Note: MCCR2 contains RAM delay settings. In this example, all delays are
0. Customers need to set a proper RAM delay based on the actual situation.)

• MXSTATUS = 0x638000

• MSMPR = 0x1

mhcr
li x3, 0x11ff
csrs mhcr,x3

#mhint
li x3, 0x6e30c

(continues on next page)

395

Chapter 19. Program Examples

(continued from previous page)

csrs mhint,x3

mxstatus
li x3, 0x638000
csrs mxstatus,x3

msmpr
csrsi msmpr,0x1

mccr2
li x3, 0xe0000009
csrs mccr2,x3

19.2 MMU setting example

/**

* Function: An example of setting C908MP MMU.
* Memory space: Virtual address <-> physical address.
*
* Pagesize 4K：vpn: {vpn2,vpn1,vpn0} <-> ppn: {ppn2,ppn1,ppn0}
* Pagesize 2M：vpn: {vpn2,vpn1} <-> ppn:{ppn2,ppn1}
* Pagesize 1G：vpn: {vnp2} <-> ppn: {ppn2}
*
**/

/*C908 will invalidate all MMU TLB entries automatically when reset*/
/*You can use sfence.vma to invalid all MMU TLB entries if necessary*/
sfence.vma x0, x0

/* Pagesize 4K：vpn: {vpn2, vpn1, vpn0} <-> ppn: {ppn2, ppn1, ppn0}*/
/* First-level page addr base：PPN (defined in satp)*/
/* Second-level page addr base：BASE2 (self define)*/
/* Third-level page addr base：BASE3 (self define)*/
/* 1. Get first-level page addr base: PPN and vpn*/
/* Get PPN*/
csrr x3, satp
li x4, 0xfffffffffff

(continues on next page)

www.t-head.cn 396

Chapter 19. Program Examples

(continued from previous page)

and x3, x3, x4

/*2. Config first-level page*/
/*First-level page addr: {PPN, vpn2, 3’b0}, first-level page pte:{ 44’b BASE2, 10’b1}

↪→ */
/*Get first-level page addr*/
slli x3, x3, 12
/*Get vpn2*/
li x4, VPN
li x5, 0x7fc0000
and x4, x4, x5
srli x4, x4, 15
and x5, x3, x4
/*Store pte at first-level page addr*/
li x6, {44’b BASE2, 10’b1}
sd x6, 0(x5)

/*3. Config second-level page*/
/*Second-level page addr: {BASE2, vpn1, 3’b0}, second-level page pte:{ 44’b BASE3, 10’

b1} */
/*Get second-level page addr*/
/* VPN1*/
li x4, VPN
li x5, 0x3fe00
and x4, x4, x5
srli x4, x4, 9
/*BASE2*/
li x5, BASE2
srli x5, x5, 12
and x5, x5, x4
/*Store pte at second-level page addr*
li x6, {44’b BASE3, 10’b1}
sd x6, 0(x5)
/*4. Config third-level page*/
/*Third-level page addr: {BASE3, vpn0, 3’b0}, third-level page pte:{
theadflag, ppn2, ppn1, ppn0, 9’b flags,1’b1} */
/*Get second-level page addr*/
/* VPN0*/
li x4, VPN
li x5, 0x1ff

(continues on next page)

www.t-head.cn 397

Chapter 19. Program Examples

(continued from previous page)

and x4, x4, x5
srli x4, x4, 3
/*BASE3*/
li x5, BASE3
srli x5, x5, 12
and x5, x5, x4
/*Store pte at second-level page addr*/
li x6, { theadflag, ppn2, ppn1, ppn0, 9’b flags, 1’b1}
sd x6, 0(x5)

/* Pagesize 2M：vpn: {vpn2, vpn1} <-> ppn: {ppn2, ppn1}*/
/*First-level page addr base：PPN (defined in satp)*/
/*Second-level page addr base：BASE2 (self define)*/

/*1. Get first-level page addr base: PPN and vpn*/
/* Get PPN*/
csrr x3, satp
li x4, 0xfffffffffff
and x3, x3, x4

/*2. Config first-level page*/
/*First-level page addr: {PPN, vpn2, 3’b0}, first-level page pte:{ 44’b
BASE2, 10’b1}*/
/*Get first-level page addr*/
slli x3, x3, 12
/*Get vpn2*/
li x4, VPN
li x5, 0x7fc0000
and x4, x4, x5
srli x4, x4, 15
and x5, x3, x4
/*Store pte at first-level page addr*/
li x6, {44’b BASE2, 10’b1}
sd x6, 0(x5)

/*3. Config second-level page*/
/*Second-level page addr: {BASE2, vpn1, 3’b0}, second-level page pte:{
theadflag, ppn2, ppn1, 9’b0, 9’b flags,1’b1} */
/*Get second-level page addr*/

(continues on next page)

www.t-head.cn 398

Chapter 19. Program Examples

(continued from previous page)

/*VPN1*/
li x4, VPN
li x5, 0x3fe00
and x4, x4, x5
srli x4, x4, 9
/*BASE2*/
li x5, BASE2
srli x5, x5, 12
and x5, x5, x4
/*Store pte at second-level page addr*/
li x6, { theadflag, ppn2, ppn1, 9’b0, 9’b flags,1’b1}
sd x6, 0(x5)

/* Pagesize 1G：vpn: {vpn2} <-> ppn: {ppn2}*/
/*First-level page addr base：PPN (defined in satp)*/
/*1. Get first-level page addr base: PPN and vpn*/
/* Get PPN*/
csrr x3, satp
li x4, 0xfffffffffff
and x3, x3, x4

/*2. Config first-level page*/
/*First-level page addr: {PPN, vpn2, 3’b0}, first-level page pte:{
theadflag, ppn2, 9’b0, 9’b0, 9’b flags,1’b1}*/
/*Get first-level page addr*/
slli x3, x3, 12
/*Get vpn2*/
li x4, VPN
li x5, 0x7fc0000
and x4, x4, x5
srli x4, x4, 15
and x5, x3, x4
/*Store pte at first-level page addr*/
li x6, { theadflag, ppn2, 9’b0, 9’b0, 9’b flags,1’b1}
sd x6, 0(x5)

www.t-head.cn 399

Chapter 19. Program Examples

19.3 PMP setting example

/**
* Function: An example of setting C908MP PMP.
* 0x0 ~ 0xf0000000, TOR mode, RWX
* 0xf0000000 ~ 0xf8000000, NAPOT mode, RW
* 0xfff73000 ~ 0xfff74000, NAPOT mode, RW
* 0xfffc0000 ~ 0xfffc2000, NAPOT mode, RW
*Different execution permissions are configured for the preceding four regions. PMP must␣
↪→be configured to prevent the CPU from executing instructions to unsupported address␣
↪→regions in different modes, especially in M-mode where the CPU has full execution␣
↪→permissions by default. Specifically, after you configure address regions that require␣
↪→execution permissions, no permission should be configured for the rest address regions.
↪→ For more information, see the following example.
**/

pmpaddr0,0x0�0xf0000000, TOR mode, read and write permissions
li x3, (0xf0000000 >> 2)
csrw pmpaddr0, x3
pmpaddr1,0xf0000000�0xf8000000, NAPOT mode, read and write permissions
li x3, (0xf0000000 >> 2 | (0x8000000-1) >> 3))
csrw pmpaddr1, x3
pmpaddr2,0xfff73000�0xfff74000, NAPOT mode, read and write permissions
li x3, (0xfff73000 >> 2 | (0x1000-1) >> 3))
csrw pmpaddr2, x3
pmpaddr3,0xfffc0000�0xfffc2000, NAPOT mode, read and write permissions
li x3, (0xfffc0000 >> 2 | (0x2000-1) >> 3))
csrw pmpaddr3, x3
pmpaddr4,0xf0000000�0x100000000, NAPOT mode, no permissions
li x3, (0xf0000000 >> 2 | (0x10000000-1) >> 3))
csrw pmpaddr4, x3
pmpaddr5,0x100000000�0xffffffffff, TOR mode, no permissions
li x3, (0xffffffffff >> 2)
csrw pmpaddr5, x3
PMPCFG0 configures the execution permission, mode, and lock bit of entries.
When lock is 1, it is valid only in M-mode.
li x3,0x88989b9b9b8f
csrw pmpcfg0, x3
pmpaddr5,0x100000000�0xffffffffff: In TOR mode, when 0x100000000 <= addr <
0xffffffffff, pmpaddr5 will be hit. However, pmpaddr5 cannot be hit in the address␣

↪→range 0xfffffff000 ~ (continues on next page)

www.t-head.cn 400

Chapter 19. Program Examples

(continued from previous page)

0xffffffffff (the minimum PMP granularity is 4 KB in C908). An NAPOT entry must be␣
↪→configured to mask the last 4 KB space of a 1 TB space.

19.4 Cache examples

19.4.1 Cache enabling example

/*C908 will invalidate all I-cache automatically when reset*/
/*You can invalidate I-cache by yourself if necessary*/
/*Invalidate I-cache*/
li x3, 0x33
csrc mcor, x3
li x3, 0x11
csrs mcor, x3
// You can also use icache instrucitons to replace the invalidate sequence
// if theadisaee is enabled.
//icache.iall
//sync.is

/*Enable I-cache*/
li x3, 0x1
csrs mhcr, x3

/*C908 will invalidate all D-cache automatically when reset*/
/*You can invalidate D-cache by yourself if necessary*/
/*Invalidate D-cache*/
li x3, 0x33
csrc mcor, x3
li x3, 0x12
csrs mcor, x3

// You can also use dcache instrucitons to replace the invalidate sequence
// if theadisaee is enabled.
// dcache.iall
// sync.is

/*Enable D-cache*/
li x3, 0x2

(continues on next page)

www.t-head.cn 401

Chapter 19. Program Examples

(continued from previous page)

csrs mhcr, x3

/*C908 will invalidate all L2 cache automatically when reset*/
/*You can invalidate L2 by yourself if necessary*/
/*Invalidate L2-cache if theadisaee is enabled*/
l2cache.iall
sync.is

/*Enable L2-cache*/
li x3, 8
csrs mccr2, x3

19.4.2 Example of synchronization between the instruction and data caches

CPU0

sd x3,0(x4) // a new instruction defined in x3
// is stored to program memory address defined in x4.

dcache.cval1 r0 // clean the new instrcution to the shared L2 cache.
sync.s // ensure completion of clean operation.

// the dcache clean is not necessarily if INSDE is not enabled.
icache.iva r0 // invalid icache according to shareable configuraiton.
sync.s/fence.i // ensure completion in all CPUs.
sd x5,0(x6) // set flag to signal operation completion.
sync.is
jr x4 // jmp to new code

CPU1�CPU3

WAIT_FINISH:
ld x7,0(x6)
bne x7,x5, WAIT_FINISH // wait CPU0 modification finish.
sync.is
jr x4 // jmp to new code

19.4.3 Example of synchronization between the TLB and the data cache

CPU0

www.t-head.cn 402

Chapter 19. Program Examples

sd x4,0(x3) // update a new translation table entry
sync.is/fence.i // ensure completion of update operation.
sfence.vma x5,x0 // invalid the TLB by va
sync.is/fence.i // ensure completion of TLB invalidation and

// synchronises context

19.5 Multi-core startup example

Note: The content of this section is outdated. V1.4.x: mrmr has been deleted and mrvbr is private to cores,
with the MRO privilege.

CPU0

...... // CPU1~CPU3 are in reset mode and
// CPU0 executes system initialize operation.

li x3, RVBA
csrw mrvbr, x3 // Set reset vector base addrress
li x3, 0x2
csrs mrmr, x3 // Release CPU1’s reset signal.
li x3, 0x4
csrs mrmr, x3 // Release CPU2’s reset signal.
li x3, 0x8
csrs mrmr, x3 // Release CPU3’s reset signal.

// CPU1~CPU3 start to execute reset exception routine.

19.6 Synchronization primitive examples

CPU0

li x1, 0x1
li x6, 0x0

ACQUIRE_LOCK: // (x3) is the lock address. 0: Free; 1: Busy.
lr x4, 0(x3) // Read lock
bnez x4, ACQUIRE_LOCK // Try again if the lock is in use
sc x5, x1, 0(x3) // Attempt to store new value
bne x6, x5, ACQUIRE_LOCK // Try again if fail
sync.s

(continues on next page)

www.t-head.cn 403

Chapter 19. Program Examples

(continued from previous page)

... // Critical section code

CPU1

sync.s/fence.i // Ensure all operations are observed before clearing the lock.
sd x0, 0(x3) // Clear the lock.

19.7 PLIC setting example

//Init id 1 machine mode int for hart 0
/*1. Set hart threshold if needed*/
li x3, (plic_base_addr + 0x200000) // h0 mthreshold addr
li x4, 0xa //threshold value
sw x4,0x0(x3) // set hart0 threshold as 0xa

/*2. Set priority for int id 1*/
li x3, (plic_base_addr + 0x0) // int id 1 prio addr
li x4, 0x1f // prio value
sw x4,0x4(x3) // init id1 priority as 0x1f

/*3. Enable m-mode int id1 to hart*/
li x3, (plic_base_addr + 0x2000) // h0 mie0 addr
li x4, 0x2
sw x4,0x0(x3) // enable int id1 to hart0

/*4. Set ip or wait external int*/
/*following code set ip*/
li x3, (plic_base_addr + 0x1000) // h0 mthreshold addr
li x4, 0x2 // id 1 pending
sw x4, 0x0(x3) // set int id1 pending

/*5. Core enters interrupt handler, read PLIC_CLAIM and get ID*/

/*6. Core takes interrupt*/

/*7. Core needs to clear external interrupt source if LEVEL(not PULSE)
configured, then core writes ID to PLIC_CLAIM and exits interrupt*/

www.t-head.cn 404

Chapter 19. Program Examples

19.8 PMU setting example

/*1. Inhibit counters counting*/
li x3, 0xffffffff
csrw mcountinhibit, x3

/*2. C908 will initial all pmu counters when reset*/
/*you can initial pmu counters manually if necessarily*/
csrw mcycle, x0
csrw minstret, x0
csrw mhpmcounter3, x0
⋯⋯
csrw mhpmcounter31, x0

/*3. Configure mhpmevent*/
li x3, 0x1
csrw mhpmevent3, x3 // mhpmcounter3 count event: L1 ICache Access Counter
li x3, 0x2
csrw mhpmevent4, x3 // mhpmcounter4 count event: L1 ICache Miss Counter
⋯⋯
li x3, 0x13
csrw mhpmevent21, x3 // mhpmcounter21 count event: L2 Cache write miss Counter

/*4. Configure mcounteren and scounteren*/
li x3, 0xffffffff
csrw mcounteren, x3 // enable super mode to read hpmcounter
li x3, 0xffffffff
csrw scounteren, x3 // enable user mode to read hpmcounter

/*5. Enable counters to count when you want*/
csrw mcountinhibit, x0

www.t-head.cn 405

CHAPTER 20

Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and
Program Implementations

20.1 Overview

The multi-core synchronization of XuanTie C900 is based on the RISC-V architecture, and complies with
the definitions about instruction synchronization (fence.i), TLB maintenance (sfence.vma), and atomic in-
struction set extension in RISC-V privileged spec.

To improve maintenance efficiency in the scenario of multi-core and non-uniform bus, XuanTie C900 further
enhances instruction synchronization, TLB maintenance, and DMA synchronization to meet different market
requirements.

20.2 RISC-V instructions

20.2.1 fence instruction

The base RISC-V instruction set includes the fence instruction, which explicitly ensures the order of program
instructions.

FENCE IORW, IORW

The fence instruction distinguishes the IO address space and memory address space. IO represents in-
put/output, and RW represents read/write.

406

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

FENCE RW ensures that preorder read/write instructions are not executed later than the local fence in-
struction. FENCE RW ensures that postorder read/write instructions are not executed before the local fence
instruction.

The following instruction can be independently formed: FENCE R, RW / FENCE R, R / FENCE R
/ FENCE RW / FENCE RW, W ⋯IO equals RW. Therefore, the following instruction can be formed:
FENCE I, IO / FENCE I, I / FENCE I / FENCE IO / FENCE IO, O ⋯IO and RW can even be mixed in
an instruction, for example, FENCE RI, IORW / FENCE IORW, IORW ⋯

By defining the eight preorder and postorder R, W, I, and O bits, FENCE enables programmers to clearly
understand the requirements of load/store on the sequence of memory or IO operations.

20.2.2 fence.i instruction

This instruction clears I-Cache to ensure that the data access results before this instruction can be accessed
by the fetch operations after the instruction.

20.2.3 sfence.vma instruction

sfence.vma rs1,rs2 is used for invalidation and synchronization in virtual memories. rs1 indicates the virtual
address and rs2 indicates the ASID.

• When rs1 and rs2 are both x0, all TLB entries are invalidated.

• When rs1! and rs2 are both x0, all TLB entries that hit the virtual address specified by rs1 are
invalidated.

• When rs1 and rs2! are both x0, all TLB entries that hit the process ID specified by rs2 are invalidated.

• When rs1! and rs2! are both x0, all TLB entries that hit the virtual address specified by rs1 and the
process ID specified by rs2 are invalidated.

20.2.4 AMO instruction

An atomic operation indicates the exclusive consecutive read, modify, and writeback operations on a shared
memory address by multiple threads.

In a single-core system, exclusive operations are applicable if not being interrupted by interrupts/exceptions.
In a single-core system, the memory model is simple and conforms to the instincts of programmers, namely,
the return value of a read operation is always from the previous write operation of the same address. However
the LSU of a single-core CPU is designed, programmers’expectations for memory access can be met.

In a multi-core system, the memory model is complex. What is the last written value? Are the results of
a read sequence sequential? What is the next write operation? These questions that do not need to be
concerned in single-core systems may become extremely complex in multi-core systems.

www.t-head.cn 407

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

Currently, multiple memory ordering models are defined by different hardware implementations:

• Sequential consistency

• Processor consistency

• Weak consistency

• Release consistency （RISC-V）

As a result, the definition of atomic operation varies according to the architecture.

In the RISC-V architecture, the AMO instruction covers abundant ALU operations (such as add,
AND/OR/XOR, and MIN/MAX) and meet the requirements of Linux for atomic operation primitives.
However, the data types supported by the AMO instruction are limited. RV32 supports only word instruc-
tions, and RV64 supports word and doubleword instructions but not halfword instructions. However, the
halfword XCHG operation is strongly required in qspinlock. As a result, RSIC-V cannot support qspinlock.

20.2.5 Load-Reserved/Store-Conditional instruction

The Load-Reserved/Store-Conditional (LR/SC) instruction is widely applied in the ARM architecture. The
compare-and-swap (CAS) instruction in the x86 architecture is equivalent to the LR/SC instruction.

Introduction to LR/SC instruction in RISC-V:

LR is similar to load. It obtains data from a specified memory and monitors subsequent write operations
of this address. After performing ALU calculation for the obtained data, the CPU uses the SC instruction
to write a new value into the memory address of the previous LR operation. If no CPU write operation is
performed on this memory address, the SC instruction writes the new value into the memory and sets rd
to 0 (indicating success), like a common store instruction. Otherwise, the SC instruction does not write the
new value into the memory, and sets rd to a non-zero value (indicating failure).

RISC-V lists the following advantages of LR/SC against CAS:

1. CAS suffers from the ABA problem, namely, CAS cares for only the results rather than the process. If the
previous load value is consistent with the value obtained by CAS, a new value can be successfully written,
even if someone has written this address. This does not meet the expectations of programmers and damages
atomicity. However, LR/SC monitors all accesses to the address, and the SC instruction is damaged even
the same value is written.

2. CAS requires three source registers and one destination register (result), which would complicate
hardware implementations.

3. To avoid the ABA problem, other systems provide a double-wide CAS (DW-CAS), which requires five
source registers and two destination registers, further complicating implementations.

4. LR/SC provides a more efficient implementation of many primitives as it only requires one load as
opposed to two with CAS (load + CAS).

www.t-head.cn 408

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

The preceding are reasons provided by RISC-V for choosing LR/SC over CAS. The fact is that software
APIs are not perfectly compatible with LR/SC. For example, Linux uses only the cmpxchg primitive for
CAS, without the load_reserved/store_conditional primitive.

LR/SC is used to implement cmpxchg.

a0 holds address of memory location
a1 holds expected value
a2 holds desired value
a0 holds return value, 0 if successful, !0 otherwise
cas:
lr.w t0, (a0) # Load original value.
bne t0, a1, fail # Doesn’t match, so fail.
sc.w t0, a2, (a0) # Try to update.
bnez t0, cas # Retry if store-conditional failed.
li a0, 0 # Set return to success.
jr ra # Return.
fail:
li a0, 1 # Set return to failure.
jr ra # Return.

Based on the loop structure of cmpxchg, double-loop implementation is formed.

c = v->counter;
while ((old = cmpxchg(&v->counter, c, c c_op i)) != c)

c = old;

If this is the case, the first, third, and fourth advantages no longer exist. Therefore, abandoning CAS
produces negative impact on software compatibility. This is why ARM64 supports CAS.

The livelock problem of LR/SC is more complex. More problems may exist for Non Uniform Memory Access
(NUMA) systems with more than 128 harts. (This is not described in this document.)

Compared with ARM64, the RISC-V does not have the load-reserved/wait for event (LR/WFE) instructions.
As a result, the load_cond primitive instruction cannot be implemented. When a single core has multiple
threads, the load_cond primitive instruction is required to stop occupying the pipeline.

20.3 T-Head enhancement instruction

20.3.1 sync.is

This instruction ensures that all preorder instructions retire earlier than this instruction and all postorder
instructions retire later than this instruction. When this instruction retires, the pipeline is cleared and the

www.t-head.cn 409

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

request is broadcast to other cores. This instruction can be used as the sync.s instruction (only for flush).

20.3.2 dcache.cipa rs1

This instruction writes the D-Cache/L2 Cache entry that hits the physical address specified by rs1 back to
the lower-level storage and invalidates this entry. This instruction can also be used as the dcache.cpa (only
for flush) or dcache.ipa (only for invalidation) instruction.

20.3.3 icache.iva rs1

This instruction invalidates the I-Cache entries that hit the virtual address specified by rs1.

20.4 Software example

The following lists the software examples of MMU and cache maintenance in the Linux RISC-V architecture.

20.4.1 TLB maintenance

20.4.1.1 TLB flush

static inline void local_flush_tlb(unsigned long asid)
{

__asm__ __volatile__ ("sfence.vma" : : : "memory");
}

20.4.1.2 Flush process related TLB entries based on ASID

static inline void local_flush_tlb(unsigned long asid)
{

__asm__ __volatile__ ("sfence.vma , %0" : : "r" (asid) : "memory");
}

20.4.1.3 Flush TLB entries based on VA

static inline void local_flush_tlb_range(unsigned long start, unsigned long size)
{

unsigned long page_add = PAGE_DOWN(start);
(continues on next page)

www.t-head.cn 410

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

unsigned long page_end = PAGE_UP(start + size);

while(page_add < page_end) {
__asm__ __volatile__ ("sfence.vma %0, zero"

:
: "r" (page_add), "r" (asid)
: "memory");

page_add += PAGE_SIZE;
}

}

20.4.1.4 Flush TLB entries based on VA and ASID

static inline void local_flush_tlb_range_asid(unsigned long start, unsigned long size,␣
↪→unsigned long asid)
{

unsigned long page_add = PAGE_DOWN(start);
unsigned long page_end = PAGE_UP(start + size);

while(page_add < page_end) {
__asm__ __volatile__ ("sfence.vma %0, %1"

:
: "r" (page_add), "r" (asid)
: "memory");

page_add += PAGE_SIZE;
}

}

20.4.2 Instruction space synchronization

20.4.2.1 Intra-core global instruction space synchronization

static inline void local_flush_icache_all(void)
{

asm volatile ("fence.i" ::: "memory");
}

www.t-head.cn 411

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

20.4.2.2 Inter-core global instruction space synchronization

static void ipi_remote_fence_i(void *info)
{

asm volatile ("fence.i" ::: "memory");
}

void flush_icache_all(void)
{

on_each_cpu(ipi_remote_fence_i, NULL, 1);
}

20.4.2.3 T-Head inter-core precise instruction space synchronization

static inline void flush_icache_range(unsigned long va_start, unsigned long size)
{

register unsigned long i asm("a0") = va_start & ~(L1_CACHE_BYTES - 1);

for (; i < (start + size); i += L1_CACHE_BYTES)
__asm__ __volatile__ ("icache.iva" : : "r" (asid) : "memory");

__asm__ __volatile__("sync.is");
}

20.4.3 DMA synchronization

20.4.3.1 T-Head inter-core precise DMA synchronization, including three directions

void dma_sync_from_cpu_to_dev(unsigned long pa_start, unsigned long size)
{

register unsigned long i asm("a0") = pa_start & ~(L1_CACHE_BYTES - 1);

for (; i < (start + size); i += L1_CACHE_BYTES)
__asm__ __volatile__ ("dcache.cpa" : : "r" (asid) : "memory");

__asm__ __volatile__("sync.s");
}

void dma_sync_from_dev_to_cpu(unsigned long pa_start, unsigned long size)
(continues on next page)

www.t-head.cn 412

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

{
register unsigned long i asm("a0") = pa_start & ~(L1_CACHE_BYTES - 1);

for (; i < (start + size); i += L1_CACHE_BYTES)
__asm__ __volatile__ ("dcache.ipa" : : "r" (asid) : "memory");

__asm__ __volatile__("sync.s");
}

void dma_sync_all(unsigned long pa_start, unsigned long size)
{

register unsigned long i asm("a0") = pa_start & ~(L1_CACHE_BYTES - 1);

for (; i < (start + size); i += L1_CACHE_BYTES)
__asm__ __volatile__ ("dcache.cipa" : : "r" (asid) : "memory");

__asm__ __volatile__("sync.s");
}

20.4.4 AMO implementations for reference

The following are riscv arch_atomic and cmpxchg implementations in Linux.

/*
* First, the atomic ops that have no ordering constraints and therefor don't
* have the AQ or RL bits set. These don't return anything, so there's only
* one version to worry about.
*/
#define ATOMIC_OP(op, asm_op, I, asm_type, c_type, prefix) \
static __always_inline \
void atomic##prefix##_##op(c_type i, atomic##prefix##_t *v) \
{ \

__asm__ __volatile__ (\
" amo" #asm_op "." #asm_type " zero, %1, %0" \
: "+A" (v->counter) \
: "r" (I) \
: "memory"); \

} \

(continues on next page)

www.t-head.cn 413

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

#ifdef CONFIG_GENERIC_ATOMIC64
#define ATOMIC_OPS(op, asm_op, I) \

ATOMIC_OP (op, asm_op, I, w, int,)
#else
#define ATOMIC_OPS(op, asm_op, I) \

ATOMIC_OP (op, asm_op, I, w, int,) \
ATOMIC_OP (op, asm_op, I, d, s64, 64)

#endif

ATOMIC_OPS(add, add, i)
ATOMIC_OPS(sub, add, -i)
ATOMIC_OPS(and, and, i)
ATOMIC_OPS(or, or, i)
ATOMIC_OPS(xor, xor, i)

#undef ATOMIC_OP
#undef ATOMIC_OPS

/*
* Atomic ops that have ordered, relaxed, acquire, and release variants.
* There's two flavors of these: the arithmatic ops have both fetch and return
* versions, while the logical ops only have fetch versions.
*/
#define ATOMIC_FETCH_OP(op, asm_op, I, asm_type, c_type, prefix) \
static __always_inline \
c_type atomic##prefix##_fetch_##op##_relaxed(c_type i, \

atomic##prefix##_t *v) \
{ \

register c_type ret; \
__asm__ __volatile__ (\

" amo" #asm_op "." #asm_type " %1, %2, %0" \
: "+A" (v->counter), "=r" (ret) \
: "r" (I) \
: "memory"); \

return ret; \
} \
static __always_inline \
c_type atomic##prefix##_fetch_##op(c_type i, atomic##prefix##_t *v) \
{ \

register c_type ret; \
(continues on next page)

www.t-head.cn 414

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

__asm__ __volatile__ (\
" amo" #asm_op "." #asm_type ".aqrl %1, %2, %0" \
: "+A" (v->counter), "=r" (ret) \
: "r" (I) \
: "memory"); \

return ret; \
}

#define ATOMIC_OP_RETURN(op, asm_op, c_op, I, asm_type, c_type, prefix) \
static __always_inline \
c_type atomic##prefix##_##op##_return_relaxed(c_type i, \

atomic##prefix##_t *v) \
{ \

return atomic##prefix##_fetch_##op##_relaxed(i, v) c_op I; \
} \
static __always_inline \
c_type atomic##prefix##_##op##_return(c_type i, atomic##prefix##_t *v) \
{ \

return atomic##prefix##_fetch_##op(i, v) c_op I; \
}

#ifdef CONFIG_GENERIC_ATOMIC64
#define ATOMIC_OPS(op, asm_op, c_op, I) \

ATOMIC_FETCH_OP(op, asm_op, I, w, int,) \
ATOMIC_OP_RETURN(op, asm_op, c_op, I, w, int,)

#else
#define ATOMIC_OPS(op, asm_op, c_op, I) \

ATOMIC_FETCH_OP(op, asm_op, I, w, int,) \
ATOMIC_OP_RETURN(op, asm_op, c_op, I, w, int,) \
ATOMIC_FETCH_OP(op, asm_op, I, d, s64, 64) \
ATOMIC_OP_RETURN(op, asm_op, c_op, I, d, s64, 64)

#endif

ATOMIC_OPS(add, add, +, i)
ATOMIC_OPS(sub, add, +, -i)

#define atomic_add_return_relaxed atomic_add_return_relaxed
#define atomic_sub_return_relaxed atomic_sub_return_relaxed
#define atomic_add_return atomic_add_return
#define atomic_sub_return atomic_sub_return

(continues on next page)

www.t-head.cn 415

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

#define atomic_fetch_add_relaxed atomic_fetch_add_relaxed
#define atomic_fetch_sub_relaxed atomic_fetch_sub_relaxed
#define atomic_fetch_add atomic_fetch_add
#define atomic_fetch_sub atomic_fetch_sub

#ifndef CONFIG_GENERIC_ATOMIC64
#define atomic64_add_return_relaxed atomic64_add_return_relaxed
#define atomic64_sub_return_relaxed atomic64_sub_return_relaxed
#define atomic64_add_return atomic64_add_return
#define atomic64_sub_return atomic64_sub_return

#define atomic64_fetch_add_relaxed atomic64_fetch_add_relaxed
#define atomic64_fetch_sub_relaxed atomic64_fetch_sub_relaxed
#define atomic64_fetch_add atomic64_fetch_add
#define atomic64_fetch_sub atomic64_fetch_sub
#endif

#undef ATOMIC_OPS

#ifdef CONFIG_GENERIC_ATOMIC64
#define ATOMIC_OPS(op, asm_op, I) \

ATOMIC_FETCH_OP(op, asm_op, I, w, int,)
#else
#define ATOMIC_OPS(op, asm_op, I) \

ATOMIC_FETCH_OP(op, asm_op, I, w, int,) \
ATOMIC_FETCH_OP(op, asm_op, I, d, s64, 64)

#endif

ATOMIC_OPS(and, and, i)
ATOMIC_OPS(or, or, i)
ATOMIC_OPS(xor, xor, i)

#define atomic_fetch_and_relaxed atomic_fetch_and_relaxed
#define atomic_fetch_or_relaxed atomic_fetch_or_relaxed
#define atomic_fetch_xor_relaxed atomic_fetch_xor_relaxed
#define atomic_fetch_and atomic_fetch_and
#define atomic_fetch_or atomic_fetch_or
#define atomic_fetch_xor atomic_fetch_xor

(continues on next page)

www.t-head.cn 416

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

#ifndef CONFIG_GENERIC_ATOMIC64
#define atomic64_fetch_and_relaxed atomic64_fetch_and_relaxed
#define atomic64_fetch_or_relaxed atomic64_fetch_or_relaxed
#define atomic64_fetch_xor_relaxed atomic64_fetch_xor_relaxed
#define atomic64_fetch_and atomic64_fetch_and
#define atomic64_fetch_or atomic64_fetch_or
#define atomic64_fetch_xor atomic64_fetch_xor
#endif

#undef ATOMIC_OPS

#undef ATOMIC_FETCH_OP
#undef ATOMIC_OP_RETURN

/* This is required to provide a full barrier on success. */
static __always_inline int atomic_fetch_add_unless(atomic_t *v, int a, int u)
{

int prev, rc;

__asm__ __volatile__ (
"0: lr.w %[p], %[c]\n"
" beq %[p], %[u], 1f\n"
" add %[rc], %[p], %[a]\n"
" sc.w.rl %[rc], %[rc], %[c]\n"
" bnez %[rc], 0b\n"
" fence rw, rw\n"
"1:\n"
: [p]"=&r" (prev), [rc]"=&r" (rc), [c]"+A" (v->counter)
: [a]"r" (a), [u]"r" (u)
: "memory");

return prev;
}
#define atomic_fetch_add_unless atomic_fetch_add_unless

#ifndef CONFIG_GENERIC_ATOMIC64
static __always_inline s64 atomic64_fetch_add_unless(atomic64_t *v, s64 a, s64 u)
{

s64 prev;
long rc;

(continues on next page)

www.t-head.cn 417

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

__asm__ __volatile__ (
"0: lr.d %[p], %[c]\n"
" beq %[p], %[u], 1f\n"
" add %[rc], %[p], %[a]\n"
" sc.d.rl %[rc], %[rc], %[c]\n"
" bnez %[rc], 0b\n"
" fence rw, rw\n"
"1:\n"
: [p]"=&r" (prev), [rc]"=&r" (rc), [c]"+A" (v->counter)
: [a]"r" (a), [u]"r" (u)
: "memory");

return prev;
}
#define atomic64_fetch_add_unless atomic64_fetch_add_unless
#endif

/*
* atomic_{cmp,}xchg is required to have exactly the same ordering semantics as
* {cmp,}xchg and the operations that return, so they need a full barrier.
*/
#define ATOMIC_OP(c_t, prefix, size) \
static __always_inline \
c_t atomic##prefix##_xchg_relaxed(atomic##prefix##_t *v, c_t n) \
{ \

return __xchg_relaxed(&(v->counter), n, size); \
} \
static __always_inline \
c_t atomic##prefix##_xchg_acquire(atomic##prefix##_t *v, c_t n) \
{ \

return __xchg_acquire(&(v->counter), n, size); \
} \
static __always_inline \
c_t atomic##prefix##_xchg_release(atomic##prefix##_t *v, c_t n) \
{ \

return __xchg_release(&(v->counter), n, size); \
} \
static __always_inline \
c_t atomic##prefix##_xchg(atomic##prefix##_t *v, c_t n) \
{ \

return __xchg(&(v->counter), n, size); \
(continues on next page)

www.t-head.cn 418

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

} \
static __always_inline \
c_t atomic##prefix##_cmpxchg_relaxed(atomic##prefix##_t *v, \

c_t o, c_t n) \
{ \

return __cmpxchg_relaxed(&(v->counter), o, n, size); \
} \
static __always_inline \
c_t atomic##prefix##_cmpxchg_acquire(atomic##prefix##_t *v, \

c_t o, c_t n) \
{ \

return __cmpxchg_acquire(&(v->counter), o, n, size); \
} \
static __always_inline \
c_t atomic##prefix##_cmpxchg_release(atomic##prefix##_t *v, \

c_t o, c_t n) \
{ \

return __cmpxchg_release(&(v->counter), o, n, size); \
} \
static __always_inline \
c_t atomic##prefix##_cmpxchg(atomic##prefix##_t *v, c_t o, c_t n) \
{ \

return __cmpxchg(&(v->counter), o, n, size); \
}

#ifdef CONFIG_GENERIC_ATOMIC64
#define ATOMIC_OPS() \

ATOMIC_OP(int, , 4)
#else
#define ATOMIC_OPS() \

ATOMIC_OP(int, , 4) \
ATOMIC_OP(s64, 64, 8)

#endif

ATOMIC_OPS()

#define atomic_xchg_relaxed atomic_xchg_relaxed
#define atomic_xchg_acquire atomic_xchg_acquire
#define atomic_xchg_release atomic_xchg_release
#define atomic_xchg atomic_xchg

(continues on next page)

www.t-head.cn 419

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

#define atomic_cmpxchg_relaxed atomic_cmpxchg_relaxed
#define atomic_cmpxchg_acquire atomic_cmpxchg_acquire
#define atomic_cmpxchg_release atomic_cmpxchg_release
#define atomic_cmpxchg atomic_cmpxchg

#undef ATOMIC_OPS
#undef ATOMIC_OP

static __always_inline int atomic_sub_if_positive(atomic_t *v, int offset)
{

int prev, rc;

__asm__ __volatile__ (
"0: lr.w %[p], %[c]\n"
" sub %[rc], %[p], %[o]\n"
" bltz %[rc], 1f\n"
" sc.w.rl %[rc], %[rc], %[c]\n"
" bnez %[rc], 0b\n"
" fence rw, rw\n"
"1:\n"
: [p]"=&r" (prev), [rc]"=&r" (rc), [c]"+A" (v->counter)
: [o]"r" (offset)
: "memory");

return prev - offset;
}

#define atomic_dec_if_positive(v) atomic_sub_if_positive(v, 1)

#ifndef CONFIG_GENERIC_ATOMIC64
static __always_inline s64 atomic64_sub_if_positive(atomic64_t *v, s64 offset)
{

s64 prev;
long rc;

__asm__ __volatile__ (
"0: lr.d %[p], %[c]\n"
" sub %[rc], %[p], %[o]\n"
" bltz %[rc], 1f\n"
" sc.d.rl %[rc], %[rc], %[c]\n"
" bnez %[rc], 0b\n"

(continues on next page)

www.t-head.cn 420

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

" fence rw, rw\n"
"1:\n"
: [p]"=&r" (prev), [rc]"=&r" (rc), [c]"+A" (v->counter)
: [o]"r" (offset)
: "memory");

return prev - offset;
}

#define __xchg_relaxed(ptr, new, size) \
({ \

__typeof__(ptr) __ptr = (ptr); \
__typeof__(new) __new = (new); \
__typeof__(*(ptr)) __ret; \
switch (size) { \
case 4: \

__asm__ __volatile__ (\
" amoswap.w %0, %2, %1\n" \
: "=r" (__ret), "+A" (*__ptr) \
: "r" (__new) \
: "memory"); \

break; \
case 8: \

__asm__ __volatile__ (\
" amoswap.d %0, %2, %1\n" \
: "=r" (__ret), "+A" (*__ptr) \
: "r" (__new) \
: "memory"); \

break; \
default: \

BUILD_BUG(); \
} \
__ret; \

})

#define xchg_relaxed(ptr, x) \
({ \

__typeof__(*(ptr)) _x_ = (x); \
(__typeof__(*(ptr))) __xchg_relaxed((ptr), \

x, sizeof(*(ptr))); \
})

(continues on next page)

www.t-head.cn 421

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

#define __xchg_acquire(ptr, new, size) \
({ \

__typeof__(ptr) __ptr = (ptr); \
__typeof__(new) __new = (new); \
__typeof__(*(ptr)) __ret; \
switch (size) { \
case 4: \

__asm__ __volatile__ (\
" amoswap.w %0, %2, %1\n" \
RISCV_ACQUIRE_BARRIER \
: "=r" (__ret), "+A" (*__ptr) \
: "r" (__new) \
: "memory"); \

break; \
case 8: \

__asm__ __volatile__ (\
" amoswap.d %0, %2, %1\n" \
RISCV_ACQUIRE_BARRIER \
: "=r" (__ret), "+A" (*__ptr) \
: "r" (__new) \
: "memory"); \

break; \
default: \

BUILD_BUG(); \
} \
__ret; \

})

#define xchg_acquire(ptr, x) \
({ \

__typeof__(*(ptr)) _x_ = (x); \
(__typeof__(*(ptr))) __xchg_acquire((ptr), \

x, sizeof(*(ptr))); \
})

#define __xchg_release(ptr, new, size) \
({ \

__typeof__(ptr) __ptr = (ptr); \
__typeof__(new) __new = (new); \

(continues on next page)

www.t-head.cn 422

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

__typeof__(*(ptr)) __ret; \
switch (size) { \
case 4: \

__asm__ __volatile__ (\
RISCV_RELEASE_BARRIER \
" amoswap.w %0, %2, %1\n" \
: "=r" (__ret), "+A" (*__ptr) \
: "r" (__new) \
: "memory"); \

break; \
case 8: \

__asm__ __volatile__ (\
RISCV_RELEASE_BARRIER \
" amoswap.d %0, %2, %1\n" \
: "=r" (__ret), "+A" (*__ptr) \
: "r" (__new) \
: "memory"); \

break; \
default: \

BUILD_BUG(); \
} \
__ret; \

})

#define xchg_release(ptr, x) \
({ \

__typeof__(*(ptr)) _x_ = (x); \
(__typeof__(*(ptr))) __xchg_release((ptr), \

x, sizeof(*(ptr))); \
})

#define __xchg(ptr, new, size) \
({ \

__typeof__(ptr) __ptr = (ptr); \
__typeof__(new) __new = (new); \
__typeof__(*(ptr)) __ret; \
switch (size) { \
case 4: \

__asm__ __volatile__ (\
" amoswap.w.aqrl %0, %2, %1\n" \

(continues on next page)

www.t-head.cn 423

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

: "=r" (__ret), "+A" (*__ptr) \
: "r" (__new) \
: "memory"); \

break; \
case 8: \

__asm__ __volatile__ (\
" amoswap.d.aqrl %0, %2, %1\n" \
: "=r" (__ret), "+A" (*__ptr) \
: "r" (__new) \
: "memory"); \

break; \
default: \

BUILD_BUG(); \
} \
__ret; \

})

#define xchg(ptr, x) \
({ \

__typeof__(*(ptr)) _x_ = (x); \
(__typeof__(*(ptr))) __xchg((ptr), _x_, sizeof(*(ptr))); \

})

#define xchg32(ptr, x) \
({ \

BUILD_BUG_ON(sizeof(*(ptr)) != 4); \
xchg((ptr), (x)); \

})

#define xchg64(ptr, x) \
({ \

BUILD_BUG_ON(sizeof(*(ptr)) != 8); \
xchg((ptr), (x)); \

})

/*
* Atomic compare and exchange. Compare OLD with MEM, if identical,
* store NEW in MEM. Return the initial value in MEM. Success is
* indicated by comparing RETURN with OLD.
*/

(continues on next page)

www.t-head.cn 424

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

#define __cmpxchg_relaxed(ptr, old, new, size) \
({ \

__typeof__(ptr) __ptr = (ptr); \
__typeof__(*(ptr)) __old = (old); \
__typeof__(*(ptr)) __new = (new); \
__typeof__(*(ptr)) __ret; \
register unsigned int __rc; \
switch (size) { \
case 4: \

__asm__ __volatile__ (\
"0: lr.w %0, %2\n" \
" bne %0, %z3, 1f\n" \
" sc.w %1, %z4, %2\n" \
" bnez %1, 0b\n" \
"1:\n" \
: "=&r" (__ret), "=&r" (__rc), "+A" (*__ptr) \
: "rJ" ((long)__old), "rJ" (__new) \
: "memory"); \

break; \
case 8: \

__asm__ __volatile__ (\
"0: lr.d %0, %2\n" \
" bne %0, %z3, 1f\n" \
" sc.d %1, %z4, %2\n" \
" bnez %1, 0b\n" \
"1:\n" \
: "=&r" (__ret), "=&r" (__rc), "+A" (*__ptr) \
: "rJ" (__old), "rJ" (__new) \
: "memory"); \

break; \
default: \

BUILD_BUG(); \
} \
__ret; \

})

#define cmpxchg_relaxed(ptr, o, n) \
({ \

__typeof__(*(ptr)) _o_ = (o); \
__typeof__(*(ptr)) _n_ = (n); \

(continues on next page)

www.t-head.cn 425

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

(__typeof__(*(ptr))) __cmpxchg_relaxed((ptr), \
o, _n_, sizeof(*(ptr))); \

})

#define __cmpxchg_acquire(ptr, old, new, size) \
({ \

__typeof__(ptr) __ptr = (ptr); \
__typeof__(*(ptr)) __old = (old); \
__typeof__(*(ptr)) __new = (new); \
__typeof__(*(ptr)) __ret; \
register unsigned int __rc; \
switch (size) { \
case 4: \

__asm__ __volatile__ (\
"0: lr.w %0, %2\n" \
" bne %0, %z3, 1f\n" \
" sc.w %1, %z4, %2\n" \
" bnez %1, 0b\n" \
RISCV_ACQUIRE_BARRIER \
"1:\n" \
: "=&r" (__ret), "=&r" (__rc), "+A" (*__ptr) \
: "rJ" ((long)__old), "rJ" (__new) \
: "memory"); \

break; \
case 8: \

__asm__ __volatile__ (\
"0: lr.d %0, %2\n" \
" bne %0, %z3, 1f\n" \
" sc.d %1, %z4, %2\n" \
" bnez %1, 0b\n" \
RISCV_ACQUIRE_BARRIER \
"1:\n" \
: "=&r" (__ret), "=&r" (__rc), "+A" (*__ptr) \
: "rJ" (__old), "rJ" (__new) \
: "memory"); \

break; \
default: \

BUILD_BUG(); \
} \
__ret; \

(continues on next page)

www.t-head.cn 426

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

})

#define cmpxchg_acquire(ptr, o, n) \
({ \

__typeof__(*(ptr)) _o_ = (o); \
__typeof__(*(ptr)) _n_ = (n); \
(__typeof__(*(ptr))) __cmpxchg_acquire((ptr), \

o, _n_, sizeof(*(ptr))); \
})

#define __cmpxchg_release(ptr, old, new, size) \
({ \

__typeof__(ptr) __ptr = (ptr); \
__typeof__(*(ptr)) __old = (old); \
__typeof__(*(ptr)) __new = (new); \
__typeof__(*(ptr)) __ret; \
register unsigned int __rc; \
switch (size) { \
case 4: \

__asm__ __volatile__ (\
RISCV_RELEASE_BARRIER \
"0: lr.w %0, %2\n" \
" bne %0, %z3, 1f\n" \
" sc.w %1, %z4, %2\n" \
" bnez %1, 0b\n" \
"1:\n" \
: "=&r" (__ret), "=&r" (__rc), "+A" (*__ptr) \
: "rJ" ((long)__old), "rJ" (__new) \
: "memory"); \

break; \
case 8: \

__asm__ __volatile__ (\
RISCV_RELEASE_BARRIER \
"0: lr.d %0, %2\n" \
" bne %0, %z3, 1f\n" \
" sc.d %1, %z4, %2\n" \
" bnez %1, 0b\n" \
"1:\n" \
: "=&r" (__ret), "=&r" (__rc), "+A" (*__ptr) \
: "rJ" (__old), "rJ" (__new) \

(continues on next page)

www.t-head.cn 427

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

: "memory"); \
break; \

default: \
BUILD_BUG(); \

} \
__ret; \

})

#define cmpxchg_release(ptr, o, n) \
({ \

__typeof__(*(ptr)) _o_ = (o); \
__typeof__(*(ptr)) _n_ = (n); \
(__typeof__(*(ptr))) __cmpxchg_release((ptr), \

o, _n_, sizeof(*(ptr))); \
})

#define __cmpxchg(ptr, old, new, size) \
({ \

__typeof__(ptr) __ptr = (ptr); \
__typeof__(*(ptr)) __old = (old); \
__typeof__(*(ptr)) __new = (new); \
__typeof__(*(ptr)) __ret; \
register unsigned int __rc; \
switch (size) { \
case 4: \

__asm__ __volatile__ (\
"0: lr.w %0, %2\n" \
" bne %0, %z3, 1f\n" \
" sc.w.rl %1, %z4, %2\n" \
" bnez %1, 0b\n" \
" fence rw, rw\n" \
"1:\n" \
: "=&r" (__ret), "=&r" (__rc), "+A" (*__ptr) \
: "rJ" ((long)__old), "rJ" (__new) \
: "memory"); \

break; \
case 8: \

__asm__ __volatile__ (\
"0: lr.d %0, %2\n" \
" bne %0, %z3, 1f\n" \

(continues on next page)

www.t-head.cn 428

Chapter 20. Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program
Implementations

(continued from previous page)

" sc.d.rl %1, %z4, %2\n" \
" bnez %1, 0b\n" \
" fence rw, rw\n" \
"1:\n" \
: "=&r" (__ret), "=&r" (__rc), "+A" (*__ptr) \
: "rJ" (__old), "rJ" (__new) \
: "memory"); \

break; \
default: \

BUILD_BUG(); \
} \
__ret; \

})

www.t-head.cn 429

	1 Introduction
	1.1 Features
	1.1.1 Features of C908MP Architectural
	1.1.2 Features of C908 Core
	1.1.3 Features of C908 vector computing units

	1.2 Configuration options
	1.3 XuanTie extended architecture
	1.4 Version compatibility
	1.5 Terms

	2 C908MP Overview
	2.1 Structure
	2.2 In-core subsystems
	2.2.1 IFU
	2.2.2 IEU
	2.2.3 VFPU
	2.2.4 LSU
	2.2.5 MMU
	2.2.6 PMP

	2.3 Multi-core subsystems
	2.3.1 CIU
	2.3.2 L2 cache
	2.3.3 Master device interface unit
	2.3.4 DCP
	2.3.5 LLP

	2.4 Multi-cluster subsystems
	2.4.1 PIC
	2.4.2 Timer
	2.4.3 Debug system

	2.5 Interface overview

	3 Instruction Sets
	3.1 RV base instruction sets
	3.1.1 Integer instruction set (RV64I)
	3.1.2 Multiply/Divide instruction set (RV64M)
	3.1.3 Atomic instruction set (RV64A)
	3.1.4 Single-precision floating-point instruction set
	3.1.5 Compressed instruction set (RV64C)
	3.1.6 Vector instruction set (RVV)
	3.1.7 Bit operation instruction set (RV64B)

	3.2 XuanTie extended instruction sets
	3.2.1 Arithmetic operation instructions
	3.2.2 Bit operation instructions
	3.2.3 Memory access instructions
	3.2.4 Cache instructions
	3.2.5 Multi-core synchronization instructions
	3.2.6 Half-precision floating-point instructions

	4 CPU Modes and Registers
	4.1 CPU modes
	4.2 Register view
	4.3 General-purpose registers
	4.4 Floating-point registers
	4.4.1 Transmit data between floating-point and general-purpose registers
	4.4.2 Maintain consistency of register precision

	4.5 Vector registers
	4.5.1 Transmit data between floating-point and general-purpose registers
	4.5.2 Transmit data between floating-point and vector registers

	4.6 System control registers
	4.6.1 Standard control registers
	4.6.2 Extended control registers

	4.7 Data formats
	4.7.1 Integer data format
	4.7.2 Floating-point data format

	4.8 Big-endian and little-endian

	5 Exceptions and Interrupts
	5.1 Overview
	5.2 Exceptions
	5.2.1 Exception handling
	5.2.2 Return from exceptions

	5.3 Interrupts
	5.3.1 Interrupt priorities
	5.3.2 Interrupt responses
	5.3.3 Return from interrupts
	5.3.4 Asynchronous errors

	6 Memory Model
	6.1 Overview
	6.1.1 Memory attributes

	6.2 SYSMAP configuration reference
	6.2.1 Memory ordering model

	6.3 MMU
	6.3.1 Overview
	6.3.2 TLB
	6.3.3 Page Table Format
	6.3.4 Address translation process
	6.3.5 System control registers
	6.3.5.1 Supervisor address translation and protection register (satp)
	6.3.5.2 smcir register
	6.3.5.3 smir register
	6.3.5.4 MMU EntryHi register (smeh)
	6.3.5.5 MMU EntryLo register(smel)

	6.4 MMU Parity Checking
	6.5 PMP
	6.5.1 Overview
	6.5.2 PMP control registers
	6.5.2.1 Physical memory protection configuration register (pmpcfg)
	6.5.2.2 Physical memory protection address register (pmpaddr)

	6.6 Memory access order

	7 Memory Subsystem
	7.1 Memory Subsystem Overview
	7.2 L1 I-Cache
	7.2.1 Overview
	7.2.2 Instruction prefetching
	7.2.3 Way prediction
	7.2.4 Loop acceleration buffer
	7.2.5 Branch history table
	7.2.6 Branch and jump target predictor
	7.2.7 Indirect branch predictor
	7.2.8 Return address predictor
	7.2.9 Fast jump target predictor
	7.2.10 Parity Check Function

	7.3 L1 D-Cache
	7.3.1 Overview
	7.3.2 Cache coherence
	7.3.3 Exclusive access

	7.4 L2 Cache
	7.4.1 Overview
	7.4.2 Cache coherence
	7.4.3 Structure
	7.4.4 RAM latency

	7.5 Accelerated memory access
	7.5.1 Instruction prefetch of the L1 I-Cache
	7.5.2 Multi-channel data prefetch of the L1 D-Cache
	7.5.3 L1 adaptive write allocation mechanism
	7.5.4 L2 prefetch mechanism

	7.6 L1/L2 cache operation instructions and registers
	7.6.1 Extended registers of the L1 cache
	7.6.2 Extended registers of the L2 cache
	7.6.3 L1/L2 cache operation instructions

	8 Vector Computations
	8.1 Vector programming model
	8.2 Vector control registers
	8.3 Vector exceptions

	9 Security Design
	9.1 Security Requirements
	9.2 Processor Security Model
	9.3 System Security Architecture
	9.3.1 Secure memory management
	9.3.2 Secure interrupts
	9.3.3 Secure Access Control
	9.3.4 Secure Debugging

	10 Interrupt Controllers
	10.1 Core local interrupt (CLINT) controller
	10.1.1 CLINT register address mapping
	10.1.2 Software interrupts
	10.1.3 CLINT timer
	10.1.4 Timer interrupts

	10.2 Platform-level interrupt controller (PLIC)
	10.2.1 Interrupt arbitration
	10.2.2 Interrupt request and response
	10.2.3 Interrupt completion
	10.2.4 PLIC register address mapping
	10.2.5 PLIC_PRIO register
	10.2.6 PLIC_IP register
	10.2.7 PLIC_IE register
	10.2.8 PLIC_CTRL register
	10.2.9 PLIC_TH register
	10.2.10 PLIC_CLAIM register

	10.3 Multi-core interrupts
	10.3.1 Multiple cores respond to external interrupts in parallel
	10.3.2 Send software interrupts across cores

	11 Bus Interface
	11.1 AXI master device interface
	11.1.1 Features of the AXI master device interface
	11.1.2 Outstanding capability of the AXI master device interface
	11.1.3 Supported transmission types of Master Device
	11.1.4 Supported response types of Master Device
	11.1.5 CPU behavior in different bus responses

	11.2 Device coherence port
	11.2.1 Features of DCP
	11.2.2 Supported transfer types of DCP
	11.2.3 Supported response types of DCP
	11.2.4 Responses issued for different behaviors

	11.3 Low Latency Port
	11.3.1 Features of LLP
	11.3.2 Outstanding capabilities of LLP
	11.3.3 Supported transfer types of LLP
	11.3.4 Supported response types of LLP

	12 Debug
	12.1 Features of the debug unit
	12.2 Debugging resource configuration

	13 Power Management
	13.1 Power domain
	13.2 Overview of low-power modes
	13.3 Core WFI process
	13.4 Individual-core power-off process
	13.5 Cluster power-off process (hardware clearing of the L2 cache)
	13.6 Simplified scenario: overall cluster power-off process (hardware clearing of the L2 cache)
	13.7 Low power consumption related programming models and interface signals
	13.7.1 Changes in Programming models
	13.7.2 Interface signals

	14 Performance Monitoring Unit
	14.1 PMU overview
	14.2 PMU programming model
	14.2.1 PMU functions
	14.2.2 PMU event overflow interrupt

	14.3 PMU related control registers
	14.3.1 M-mode counter access enable register (mcounteren)
	14.3.2 S-mode counter access enable register (scounteren)
	14.3.3 M-mode count inhibit register (mcountinhibit)
	14.3.4 S-mode count inhibit register (scountinhibit)
	14.3.5 S-mode write enable register (mcounterwen)
	14.3.6 Performance monitoring event select register (mhpmevent3-31)
	14.3.7 Event counters

	15 Program Examples
	15.1 Optimal performance configuration for CPU
	15.2 MMU setting examples
	15.3 PMP setting examples
	15.4 Cache setting example
	15.4.1 Example of enabling Cache
	15.4.2 Example of synchronization between I-Cache and D-Cache
	15.4.3 Example of synchronization between TLB and D-Cache
	15.4.4 Setting of L2 cache partition function

	15.5 Synchronization primitive setting example
	15.6 PLIC setting example
	15.7 PMU setting example

	16 Appendix A Standard Instructions
	16.1 Appendix A-1 I instructions
	16.1.1 ADD: a signed add instruction
	16.1.2 ADDI: a signed add immediate instruction
	16.1.3 ADDIW: a signed add immediate instruction that operates on the lower 32 bits
	16.1.4 ADDW: a signed add instruction that operates on the lower 32 bits
	16.1.5 AND: a bitwise AND instruction
	16.1.6 ANDI: an immediate bitwise AND instruction
	16.1.7 AUIPC: an instruction that adds the immediate in the upper bits to the PC
	16.1.8 BEQ: a branch-if-equal instruction
	16.1.9 BGE: a signed branch-if-greater-than-or-equal instruction
	16.1.10 BGEU: an unsigned branch-if-greater-than-or-equal instruction
	16.1.11 BLT: a signed branch-if-less-than instruction
	16.1.12 BLTU: an unsigned branch-if-less-than instruction
	16.1.13 BNE: a branch-if-not-equal instruction
	16.1.14 CSRRC: a move instruction that clears control registers
	16.1.15 CSRRCI: a move instruction that clears immediates in control registers
	16.1.16 CSRRS: a move instruction for setting control registers
	16.1.17 CSRRSI: a move instruction for setting immediates in control registers
	16.1.18 CSRRW: a move instruction that reads/writes control registers
	16.1.19 CSRRWI: a move instruction that reads/writes immediates in control registers
	16.1.20 EBREAK: a breakpoint instruction
	16.1.21 ECALL: an environment call instruction
	16.1.22 FENCE: a memory synchronization instruction
	16.1.23 FENCE.I: an instruction stream synchronization instruction
	16.1.24 JAL: an instruction for directly jumping to a subroutine
	16.1.25 JALR: an instruction for jumping to a subroutine by using an address in a register
	16.1.26 LB: a sign-extended byte load instruction
	16.1.27 LBU: an unsign-extended byte load instruction
	16.1.28 LD: a doubleword load instruction
	16.1.29 LH: a sign-extended halfword load instruction
	16.1.30 LHU: an unsign-extended halfword load instruction
	16.1.31 LUI: an instruction for loading the immediate in the upper bits
	16.1.32 LW: a sign-extended word load instruction
	16.1.33 LWU: an unsign-extended word load instruction
	16.1.34 MRET: an instruction for returning from exceptions in M-mode
	16.1.35 OR: a bitwise OR instruction
	16.1.36 ORI: an immediate bitwise OR instruction
	16.1.37 SB: a byte store instruction
	16.1.38 SD: a doubleword store instruction
	16.1.39 SFENCE.VMA: a virtual memory synchronization instruction
	16.1.40 SH: a halfword store instruction
	16.1.41 SLL: a logical left shift instruction
	16.1.42 SLLI: an immediate logical left shift instruction
	16.1.43 SLLIW: an immediate logical left shift instruction that operates on the lower 32 bits
	16.1.44 SLLW: a logical left shift instruction that operates on the lower 32 bits
	16.1.45 SLT: a signed set-if-less-than instruction
	16.1.46 SLTI: a signed set-if-less-than-immediate instruction
	16.1.47 SLTIU: an unsigned set-if-less-than-immediate instruction
	16.1.48 SLTU: an unsigned set-if-less-than instruction
	16.1.49 SRA: an arithmetic right shift instruction
	16.1.50 SRAI: an immediate arithmetic right shift instruction
	16.1.51 SLLIW: an immediate arithmetic right shift instruction that operates on the lower 32 bits
	16.1.52 SRAW: an arithmetic right shift instruction that operates on the lower 32 bits
	16.1.53 SRET: an instruction for returning from exceptions in S-mode
	16.1.54 SRL: a logical right shift instruction
	16.1.55 SRLI: an immediate logical right shift instruction
	16.1.56 SRLIW: an immediate logical right shift instruction that operates on the lower 32 bits
	16.1.57 SRLW: a logical right shift instruction that operates on the lower 32 bits
	16.1.58 SUB: a signed subtract instruction
	16.1.59 SUBW: a signed subtract instruction that operates on the lower 32 bits
	16.1.60 SW: a word store instruction
	16.1.61 WFI: an instruction for entering the low power mode
	16.1.62 XOR: a bitwise XOR instruction
	16.1.63 XORI: an immediate bitwise XOR instruction

	16.2 Appendix A-2 M instructions
	16.2.1 DIV: a signed divide instruction
	16.2.2 DIVU: an unsigned divide instruction
	16.2.3 DIVUW: an unsigned divide instruction that operates on the lower 32 bits
	16.2.4 DIVW: a signed divide instruction that operates on the lower 32 bits
	16.2.5 MUL: a signed multiply instruction
	16.2.6 MULH: a signed multiply instruction that extracts the upper bits
	16.2.7 MULHSU: a signed-unsigned multiply instruction that extracts the upper bits
	16.2.8 MULHU: an unsigned multiply instruction that extracts the upper bits
	16.2.9 MULW: a signed multiply instruction that operates on the lower 32 bits
	16.2.10 REM: a signed remainder instruction
	16.2.11 REMU: an unsigned remainder instruction
	16.2.12 REMUW: an unsigned remainder instruction that operates on the lower 32 bits
	16.2.13 REMW: a signed remainder instruction that operates on the lower 32 bits

	16.3 Appendix A-3 A instructions
	16.3.1 AMOADD.D: an atomic add instruction
	16.3.2 AMOADD.W: an atomic add instruction that operates on the lower 32 bits
	16.3.3 AMOAND.D: an atomic bitwise AND instruction
	16.3.4 AMOAND.W: an atomic bitwise AND instruction that operates on the lower 32 bits
	16.3.5 AMOMAX.D: an atomic signed MAX instruction
	16.3.6 AMOMAX.W: an atomic signed MAX instruction that operates on the lower 32 bits
	16.3.7 MOMAXU.DA: an atomic unsigned MAX instruction
	16.3.8 AMOMAXU.W: an atomic unsigned MAX instruction that operates on the lower 32 bits.
	16.3.9 AMOMIN.D: an atomic signed MIN instruction
	16.3.10 AMOMIN.W: an atomic signed MIN instruction that operates on the lower 32 bits
	16.3.11 AMOMINU.D: an atomic unsigned MIN instruction
	16.3.12 AMOMINU.W: an atomic unsigned MIN instruction that operates on the lower 32 bits
	16.3.13 AMOOR.D: an atomic bitwise OR instruction.
	16.3.14 AMOOR.W: an atomic bitwise OR instruction that operates on the lower 32 bits
	16.3.15 AMOSWAP.D: an atomic swap instruction
	16.3.16 AMOSWAP.W: an atomic swap instruction that operates on the lower 32 bits
	16.3.17 AMOXOR.D: an atomic bitwise XOR instruction
	16.3.18 AMOXOR.W: an atomic bitwise XOR instruction that operates on the lower 32 bits
	16.3.19 LR.D: a doubleword load-reserved instruction
	16.3.20 LR.W: a word load-reserved instruction
	16.3.21 SC.D: a doubleword store-conditional instruction
	16.3.22 SC.W: a word store-conditional instruction

	16.4 Appendix A-4 F instructions
	16.4.1 FADD.S: a single-precision floating-point add instruction
	16.4.2 FCLASS.S: a single-precision floating-point classify instruction
	16.4.3 FCVT.L.S: an instruction that converts a single-precision floating-point number into a signed long integer
	16.4.4 FCVT.LU.S: an instruction that converts a single-precision floating-point number into an unsigned long integer
	16.4.5 FCVT.S.L: an instruction that converts a signed long integer into a single-precision floating-point number
	16.4.6 FCVT.S.LU: an instruction that converts an unsigned long integer into a single-precision floating-point number
	16.4.7 FCVT.S.W: an instruction that converts a signed integer into a single-precision floating-point number
	16.4.8 FCVT.S.WU: an instruction that converts an unsigned integer into a single-precision floating-point number
	16.4.9 FCVT.W.S: an instruction that converts a single-precision floating-point number into a signed integer
	16.4.10 FCVT.WU.S: an instruction that converts a single-precision floating-point number into an unsigned integer
	16.4.11 FDIV.S: a single-precision floating-point divide instruction
	16.4.12 FEQ.S: a single-precision floating-point compare equal instruction
	16.4.13 FLE.S: a single-precision floating-point compare less than or equal to instruction
	16.4.14 FLT.S: a single-precision floating-point compare less than instruction
	16.4.15 FLW: a single-precision floating-point load instruction
	16.4.16 FMADD.S: a single-precision floating-point multiply-add instruction
	16.4.17 FMAX.S: a single-precision floating-point MAX instruction
	16.4.18 FMIN.S: a single-precision floating-point MIN instruction
	16.4.19 FMSUB.S: a single-precision floating-point multiply-subtract instruction
	16.4.20 FMUL.S: a single-precision floating-point multiply instruction
	16.4.21 FMV.W.X: a single-precision floating-point write move instruction
	16.4.22 FMV.X.H: a single-precision floating-point read move instruction
	16.4.23 FNMADD.S: a single-precision floating-point negate-(multiply-add) instruction
	16.4.24 FNMSUB.S: a single-precision floating-point negate-(multiply-subtract) instruction
	16.4.25 FSGNJ.S: a single-precision floating-point sign-injection instruction
	16.4.26 FSGNJN.S: a single-precision floating-point negate sign-injection instruction
	16.4.27 FSGNJX.S: a single-precision floating-point XOR sign-injection instruction
	16.4.28 FSQRT.S: a single-precision floating-point square-root instruction
	16.4.29 FSUB.S: a single-precision floating-point subtract instruction
	16.4.30 FSW: a single-precision floating-point store instruction

	16.5 Appendix A-6 C Instructions
	16.5.1 C.ADD: a signed add instruction
	16.5.2 C.ADDI: a signed add immediate instruction
	16.5.3 C.ADDIW: an add immediate instruction that operates on the lower 32 bits
	16.5.4 C.ADDI4SPN: an instruction that adds an immediate scaled by 4 to the stack pointer
	16.5.5 C.ADDI16SP: an instruction that adds an immediate scaled by 16 to the stack pointer
	16.5.6 C.ADDW: a signed add instruction that operates on the lower 32 bits
	16.5.7 C.AND: a bitwise AND instruction
	16.5.8 C.ANDI: an immediate bitwise AND instruction
	16.5.9 C.BEQZ: a branch-if-equal-to-zero instruction
	16.5.10 C.BNEZ: a branch-if-not-equal-to-zero instruction
	16.5.11 C.EBREAK: a break instruction
	16.5.12 C.FLD: a floating-point load doubleword instruction
	16.5.13 C.FLDSP: a floating-point doubleword load stack instruction
	16.5.14 C.FSD: a floating-point store doubleword instruction
	16.5.15 C.FSDSP: a floating-point store doubleword stack pointer instruction
	16.5.16 C.J: a unconditional jump instruction
	16.5.17 C.JALR: a jump and link register instruction
	16.5.18 C.JR: a jump register instruction
	16.5.19 C.LD: a load doubleword instruction
	16.5.20 C.LDSP: a load doubleword instruction
	16.5.21 C.LI: a load immediate instruction
	16.5.22 C.LUI: a load upper immediate instruction
	16.5.23 C.LW: a load word instruction
	16.5.24 C.LWSP: a load word stack pointer instruction
	16.5.25 C.MV: an instruction that copies the value in rs to rd
	16.5.26 C.NOP: a no-operation instruction
	16.5.27 C.OR: a bitwise OR instruction
	16.5.28 C.SD: a store doubleword instruction
	16.5.29 C.SDSP: a store doubleword stack pointer instruction
	16.5.30 C.SLLI: an immediate logical left shift instruction
	16.5.31 C.SRAI: a right shift arithmetic immediate instruction
	16.5.32 C.SRLI: an immediate right shift instruction
	16.5.33 C.SW: a store word instruction
	16.5.34 C.SWSP: a store word stack pointer instruction
	16.5.35 C.SUB: a signed subtract instruction
	16.5.36 C.SUBW: a signed subtract instruction that operates on the lower 32 bits
	16.5.37 C.XOR: a bitwise XOR instruction

	16.6 Appendix A-8 Pseudo instructions

	17 Appendix B T-Head Extended Instructions
	17.1 Appendix B-1 Cache instructions
	17.1.1 DCACHE.CALL: an instruction that clears all dirty page table entries in the D-Cache
	17.1.2 DCACHE.CIALL: an instruction that clears all dirty page table entries in the D-Cache and invalidates the D-Cache
	17.1.3 DCACHE.CIPA: clears dirty page table entries that match the specified physical addresses from the D-Cache and invalidates the the D-Cache
	17.1.4 DCACHE.CISW: an instruction that clears dirty page table entries in the D-Cache based on the specified way and set and invalidates the D-Cache
	17.1.5 DCACHE.CIVA: an instruction that clears dirty page table entries that match the specified virtual addresses in the D-Cache and invalidates the D-Cache
	17.1.6 DCACHE.CPA: an instruction that clears dirty page table entries that match the specified physical addresses from the D-Cache
	17.1.7 DCACHE.CPAL1: an instruction that clears dirty page table entries that match the specified physical addresses from the L1 D-Cache
	17.1.8 DCACHE.CVA: an instruction that clears dirty page table entries that match the specified virtual addresses in the D-Cache
	17.1.9 DCACHE.CVAL1: an instruction that clears dirty page table entries that match the specified virtual addresses in the L1 D-Cache
	17.1.10 DCACHE.IPA: an instruction that invalidates page table entries that match the specified physical addresses in the D-Cache
	17.1.11 DCACHE.ISW: an instruction that invalidates page table entries in the D-Cache based on the specified way and set and invalidates the D-Cache
	17.1.12 DCACHE.IVA: an instruction that invalidates the D-Cache based on the specified virtual address
	17.1.13 DCACHE.IALL: an instruction that invalidates all page table entries in the D-Cache.
	17.1.14 ICACHE.IALL: an instruction that invalidates all page table entries in the I-Cache
	17.1.15 ICACHE.IALLS: an instruction that invalidates all page table entries in the I-Cache through broadcasting
	17.1.16 ICACHE.IPA: an instruction that invalidates page table entries that match the specified physical addresses in the I-Cache
	17.1.17 ICACHE.IVA: an instruction that invalidates page table entries that match the specified virtual addresses in the I-Cache
	17.1.18 L2CACHE.CALL: an instruction that clears all dirty page table entries in the L2 Cache
	17.1.19 L2CACHE.CIALL: an instruction that clears all dirty page table entries in the L2 Cache and invalidates the L2 Cache
	17.1.20 L2CACHE.IALL: an instruction that invalidates the L2 Cache
	17.1.21 DCACHE.CSW: an instruction that clears dirty page table entries in the D-Cache based on the specified set and way

	17.2 Appendix B-2 Multi-core synchronization instructions
	17.2.1 SFENCE.VMAS: a broadcast instruction that synchronizes the virtual memory address
	17.2.2 SYNC: an instruction that performs the synchronization operation
	17.2.3 SYNC.I: an instruction that synchronizes the clearing operation.
	17.2.4 SYNC.IS: a broadcast instruction that synchronizes the clearing operation
	17.2.5 SYNC.S: a broadcast instruction that performs a synchronization operation

	17.3 Appendix B-3 Arithmetic operation instructions
	17.3.1 ADDSL: an add register instruction that shifts registers
	17.3.2 MULA: a multiply-add instruction
	17.3.3 MULAH: a multiply-add instruction that operates on the lower 16 bits
	17.3.4 MULAW: a multiply-add instruction that operates on the lower 32 bits
	17.3.5 MULS: a multiply-subtract instruction
	17.3.6 MULSH: a multiply-subtract instruction that operates on the lower 16 bits
	17.3.7 MULSW: a multiply-subtract instruction that operates on the lower 32 bits
	17.3.8 MVEQZ: an instruction that sends a message when the register is 0
	17.3.9 MVNEZ: an instruction that sends a message when the register is not 0
	17.3.10 SRRI: an instruction that implements a cyclic right shift operation on a linked list
	17.3.11 SRRIW: an instruction that implements a cyclic right shift operation on a linked list of low 32 bits of registers.

	17.4 Appendix B-4 Bitwise operation instructions
	17.4.1 EXT: a signed extension instruction that extracts consecutive bits of a register
	17.4.2 EXTU: a zero extension instruction that extracts consecutive bits of a register
	17.4.3 FF0: an instruction that finds the first bit with the value of 0 in a register
	17.4.4 FF1: an instruction that finds the bit with the value of 1
	17.4.5 REV: an instruction that reverses the byte order in a word stored in the register
	17.4.6 REVW: an instruction that reverses the byte order in a low 32-bit word
	17.4.7 TST: an instruction that tests bits with the value of 0
	17.4.8 TSTNBZ: an instruction that tests bytes with the value of 0

	17.5 Appendix B-5 Storage instructions
	17.5.1 FLRD: a load doubleword instruction that shifts floating-point registers
	17.5.2 FLRW: a load word instruction that shifts floating-point registers
	17.5.3 FLURD: a load doubleword instruction that shifts low 32 bits of floating-point registers
	17.5.4 FLURW: a load word instruction that shifts low 32 bits of floating-point registers
	17.5.5 FSRD: a store doubleword instruction that shifts floating-point registers
	17.5.6 FSRW: a store word instruction that shifts floating-point registers.
	17.5.7 FSURD: a store doubleword instruction that shifts low 32 bits of floating-point registers
	17.5.8 FSURW: a store word instruction that shifts low 32 bits of floating-point registers
	17.5.9 LBIA: a base-address auto-increment instruction that extends signed bits and loads bytes
	17.5.10 LBIB: a load byte instruction that auto-increments the base address and extends signed bits
	17.5.11 LBUIA: a base-address auto-increment instruction that extends zero bits and loads bytes
	17.5.12 LBUIB: a load byte instruction that auto-increments the base address and extends zero bits
	17.5.13 LDD: an instruction that loads double registers
	17.5.14 LDIA: a base-address auto-increment instruction that loads doublewords and extends signed bits
	17.5.15 LDIB: a load doubleword instruction that auto-increments the base address and extends the signed bits
	17.5.16 LHIA: a base-address auto-increment instruction that loads halfwords and extends signed bits
	17.5.17 LHIB: a load halfword instruction that auto-increments the base address and extends signed bits
	17.5.18 LHUIA: a base-address auto-increment instruction that extends zero bits and loads halfwords
	17.5.19 LHUIB: a load halfword instruction that auto-increments the base address and extends zero bits
	17.5.20 LRB: a load byte instruction that shifts registers and extends signed bits
	17.5.21 LRBU: a load byte instruction that shifts registers and extends zero bits
	17.5.22 LRD: a load doubleword instruction that shifts registers
	17.5.23 LRH: a load halfword instruction that shifts registers and extends signed bits
	17.5.24 LRHU: a load halfword instruction that shifts registers and extends zero bits
	17.5.25 LRW: a load word instruction that shifts registers and extends signed bits
	17.5.26 LRWU: a load word instruction that shifts registers and extends zero bits
	17.5.27 LURB: a load byte instruction that shifts low 32 bits of registers and extends signed bits
	17.5.28 LURBU: a load byte instruction that shifts low 32 bits of registers and extends zero bits
	17.5.29 LURD: a load doubleword instruction that shifts low 32 bits of registers
	17.5.30 LURH: a load halfword instruction that shifts low 32 bits of registers and extends signed bits
	17.5.31 LURHU: a load halfword instruction that shifts low 32 bits of registers and extends zero bits
	17.5.32 LURW: a load word instruction that shifts low 32 bits of registers and extends signed bits
	17.5.33 LURWU: a load word instruction that shifts 32 bits of registers and extends zero bits
	17.5.34 LWD: a load word instruction that loads double registers and extends signed bits
	17.5.35 LWIA: a base-address auto-increment instruction that extends signed bits and loads words
	17.5.36 LWIB: a load word instruction that auto-increments the base address and extends signed bits
	17.5.37 LWUD: a load word instruction that loads double registers and extends zero bits
	17.5.38 LWUIA: a base-address auto-increment instruction that extends zero bits and loads words
	17.5.39 LWUIB: a load word instruction that auto-increments the base address and extends zero bits
	17.5.40 SBIA: a base-address auto-increment instruction that stores bytes
	17.5.41 SBIB: a store byte instruction that auto-increments the base address
	17.5.42 SDD: an instruction that stores double registers
	17.5.43 SDIA: a base-address auto-increment instruction that stores doublewords
	17.5.44 SDIB: a store doubleword instruction that auto-increments the base address
	17.5.45 SHIA: a base-address auto-increment instruction that stores halfwords
	17.5.46 SHIB: a store halfword instruction that auto-increments the base address
	17.5.47 SRB: a store byte instruction that shifts registers
	17.5.48 SRD: a store doubleword instruction that shifts registers
	17.5.49 SRH: a store halfword instruction that shifts registers
	17.5.50 SRW: a store word instruction that shifts registers
	17.5.51 SURB: a store byte instruction that shifts low 32 bits of registers
	17.5.52 SURD: a store doubleword instruction that shifts low 32 bits of registers
	17.5.53 SURH: a store halfword instruction that shifts low 32 bits of registers
	17.5.54 SURW: a store word instruction that shifts low 32 bits of registers
	17.5.55 SWIA: a base-address auto-increment instruction that stores words
	17.5.56 SWIB: a store word instruction that auto-increments the base address
	17.5.57 SWD: an instruction that stores the low 32 bits of double registers

	17.6 Appendix B-6 Half-precision floating-point instructions
	17.6.1 FADD.H: a half-precision floating-point add instruction
	17.6.2 FCLASS.H: a half-precision floating-point classification instruction
	17.6.3 FCVT.D.H: an instruction that converts half-precision floating-point data to double-precision floating-point data
	17.6.4 FCVT.H.D: an instruction that converts double-precision floating-point data to half-precision floating-point data
	17.6.5 FCVT.H.L: an instruction that converts a signed long integer into a half-precision floating-point number
	17.6.6 FCVT.H.LU: an instruction that converts an unsigned long integer into a half-precision floating-point number
	17.6.7 FCVT.H.S: an instruction that converts single precision floating-point data to half-precision floating-point data
	17.6.8 FCVT.H.W: an instruction that converts a signed integer into a half-precision floating-point number
	17.6.9 FCVT.H.WU: an instruction that converts an unsigned integer into a half-precision floating-point number
	17.6.10 FCVT.L.H: an instruction that converts a half-precision floating-point number to a signed long integer
	17.6.11 FCVT.LU.H: an instruction that converts a half-precision floating-point number to an unsigned long integer
	17.6.12 FCVT.S.H: an instruction that converts half-precision floating-point data to single precision floating-point data
	17.6.13 FCVT.W.H: an instruction that converts a half-precision floating-point number to a signed integer
	17.6.14 FCVT.WU.H: an instruction that converts a half-precision floating-point number to an unsigned integer
	17.6.15 FDIV.H: a half-precision floating-point division instruction
	17.6.16 FEQ.H: an equal instruction that compares two half-precision numbers
	17.6.17 FLE.H: a less than or equal to instruction that compares two half-precision floating-point numbers
	17.6.18 FLH: an instruction that loads half-precision floating-point data
	17.6.19 FLT.H: a less than instruction that compares two half-precision floating-point numbers
	17.6.20 FMADD.H: a half-precision floating-point multiply-add instruction
	17.6.21 FMAX.H: a half-precision floating-point maximum instruction
	17.6.22 FMIN.H: a half-precision floating-point minimum instruction
	17.6.23 FMSUB.H: a half-precision floating-point multiply-subtract instruction
	17.6.24 FMUL.H: a half-precision floating-point multiply instruction
	17.6.25 FMV.H.X: a half-precision floating-point write transmit instruction
	17.6.26 FMV.X.H: a transmission instruction that reads half-precision floating-point registers
	17.6.27 FNMADD.H: a half-precision floating-point negate-(multiply-add) instruction
	17.6.28 FNMSUB.H: a half-precision floating-point negate-(multiply-subtract) instruction
	17.6.29 FSGNJ.H: a half-precision floating-point sign-injection instruction
	17.6.30 FSGNJN.H: a half-precision floating-point sign-injection negate instruction
	17.6.31 FSGNJX.H: a half-precision floating-point sign-injection XOR instruction
	17.6.32 FSH: an instruction that stores half-precision floating point numbers
	17.6.33 FSQRT.H: an instruction that calculates the square root of the half-precision floating-point number
	17.6.34 FSUB.H: a half-precision floating-point subtract instruction

	18 Appendix C Control Registers
	18.1 Appendix C-1 M-mode control registers
	18.1.1 M-mode information register group
	18.1.1.1 Machine vendor ID register (mvendorid)
	18.1.1.2 Machine architecture ID register (marchid)
	18.1.1.3 Machine implementation ID register (mimpid)
	18.1.1.4 Machine hart ID register (mhartid)

	18.1.2 M-mode exception configuration register group
	18.1.2.1 Machine status register (mstatus)
	18.1.2.2 M-mode instruction set architecture register (misa)
	18.1.2.3 M-mode exception downgrade control register (medeleg)
	18.1.2.4 M-mode interrupt downgrade control register (mideleg)
	18.1.2.5 M-mode interrupt-enable register (mie)
	18.1.2.6 M-mode trap vector base address register (mtvec)
	18.1.2.7 M-mode counter access enable register (mcounteren)

	18.1.3 M-mode exception handling register group
	18.1.3.1 M-mode scratch register (mscratch)
	18.1.3.2 M-mode exception program counter register (mepc)
	18.1.3.3 M-mode cause register (mcause)
	18.1.3.4 M-mode interrupt-pending register (mip)

	18.1.4 M-mode memory protection registers
	18.1.4.1 Physical memory protection configuration register (pmpcfg)
	18.1.4.2 Physical memory address register (pmpaddr)

	18.1.5 M-mode counter registers
	18.1.5.1 M-mode cycle counter (mcycle)
	18.1.5.2 M-mode instructions-retired counter (minstret)
	18.1.5.3 M-mode event counter (mhpmcountern)

	18.1.6 M-mode counter configuration registers
	18.1.6.1 M-mode event selector (mhpmeventn)

	18.1.7 M-mode CPU control and status extension registers
	18.1.7.1 M-mode extension status register (mxstatus)
	18.1.7.2 M-mode hardware configuration register (mhcr)
	18.1.7.3 M-mode hardware operation register (mcor)
	18.1.7.4 M-mode L2 Cache control register (mccr2)
	18.1.7.5 M-mode implicit operation register (mhint)
	18.1.7.6 M-mode reset vector base address register (mrvbr)
	18.1.7.7 S-mode counter write enable register (mcounterwen)
	18.1.7.8 M-mode event interrupt enable register (mcounterinten)
	18.1.7.9 M-mode event overflow mark register (mcounteren)

	18.1.8 M-mode cache access extension registers
	18.1.8.1 M-mode cache instruction register (mcins)
	18.1.8.2 M-mode cache access index register (mcindex)
	18.1.8.3 M-mode cache data register (mcdata0/1)

	18.1.9 M-mode CPU model registers
	18.1.9.1 M-mode CPU model register (mcpuid)
	18.1.9.2 On-chip bus base address register (mapbaddr)

	18.1.10 Multi-core extension registers
	18.1.10.1 Snoop listening enable register (msmpr)

	18.2 Appendix C-2 S-mode control registers
	18.2.1 S-mode exception configuration registers
	18.2.1.1 S-mode status register (sstatus)
	18.2.1.2 S-mode interrupt-enable register (sie)
	18.2.1.3 S-mode trap vector base address register (stvec)
	18.2.1.4 S-mode counter access enable register (scounteren)

	18.2.2 S-mode exception handling registers
	18.2.2.1 S-mode scratch register (sscratch)
	18.2.2.2 S-mode exception program counter register (sepc)
	18.2.2.3 S-mode cause register (scause)
	18.2.2.4 S-mode interrupt-pending register (sip)

	18.2.3 S-mode address translation registers
	18.2.3.1 S-mode address translation register (satp)

	18.2.4 S-mode CPU control and status extension registers
	18.2.4.1 S-mode extension status register (sxstatus)
	18.2.4.2 S-mode hardware control register (shcr)
	18.2.4.3 S-mode event overflow interrupt enable register (scounterinten)
	18.2.4.4 S-mode event overflow mark register (scounterof)
	18.2.4.5 S-mode cycle counter (scycle)
	18.2.4.6 S-mode instructions-retired counter (sinstret)
	18.2.4.7 S-mode event counter (shpmcountern)

	18.2.5 S-mode MMU extension register
	18.2.5.1 S-mode MMU control register (smcir)
	18.2.5.2 S-mode MMU control register (smir)
	18.2.5.3 S-mode MMU control register (smeh)
	18.2.5.4 S-mode MMU control register (smel)

	18.3 Appendix C-3 U-mode control registers
	18.3.1 U-mode floating-point control registers
	18.3.1.1 Floating-point accrued exceptions register (fflags)
	18.3.1.2 Floating-point dynamic rounding mode register (frm)
	18.3.1.3 Floating-point control and status register (fcsr)

	18.3.2 U-mode counter/timer registers
	18.3.2.1 User cycle register (cycle)
	18.3.2.2 U-mode timer register (time)
	18.3.2.3 User instructions-retired counter (instret)
	18.3.2.4 User event counter (hpmcountern)

	18.3.3 U-mode floating-point extension control registers
	18.3.3.1 U-mode floating-point extension control register (fxcr)

	18.3.4 Vector extension registers
	18.3.4.1 Vector start position register (vstart)
	18.3.4.2 Fixed-point overflow flag bit register (vxsat)
	18.3.4.3 Fixed-point rounding mode register (vxrm)
	18.3.4.4 Vector length register (vl)
	18.3.4.5 Vector data type register (vtype)
	18.3.4.6 Vector width (unit: byte) register (vlenb)

	18.4 Appendix C-4 Additional Register description

	19 Program Examples
	19.1 Optimal CPU performance configuration
	19.2 MMU setting example
	19.3 PMP setting example
	19.4 Cache examples
	19.4.1 Cache enabling example
	19.4.2 Example of synchronization between the instruction and data caches
	19.4.3 Example of synchronization between the TLB and the data cache

	19.5 Multi-core startup example
	19.6 Synchronization primitive examples
	19.7 PLIC setting example
	19.8 PMU setting example

	20 Appendix D XuanTie C900 Multi-core Synchronization Related Instructions and Program Implementations
	20.1 Overview
	20.2 RISC-V instructions
	20.2.1 fence instruction
	20.2.2 fence.i instruction
	20.2.3 sfence.vma instruction
	20.2.4 AMO instruction
	20.2.5 Load-Reserved/Store-Conditional instruction

	20.3 T-Head enhancement instruction
	20.3.1 sync.is
	20.3.2 dcache.cipa rs1
	20.3.3 icache.iva rs1

	20.4 Software example
	20.4.1 TLB maintenance
	20.4.1.1 TLB flush
	20.4.1.2 Flush process related TLB entries based on ASID
	20.4.1.3 Flush TLB entries based on VA
	20.4.1.4 Flush TLB entries based on VA and ASID

	20.4.2 Instruction space synchronization
	20.4.2.1 Intra-core global instruction space synchronization
	20.4.2.2 Inter-core global instruction space synchronization
	20.4.2.3 T-Head inter-core precise instruction space synchronization

	20.4.3 DMA synchronization
	20.4.3.1 T-Head inter-core precise DMA synchronization, including three directions

	20.4.4 AMO implementations for reference

